Shortcuts

Source code for torchvision.models.video.s3d

from functools import partial
from typing import Any, Callable, Optional

import torch
from torch import nn
from torchvision.ops.misc import Conv3dNormActivation

from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _KINETICS400_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface


__all__ = [
    "S3D",
    "S3D_Weights",
    "s3d",
]


class TemporalSeparableConv(nn.Sequential):
    def __init__(
        self,
        in_planes: int,
        out_planes: int,
        kernel_size: int,
        stride: int,
        padding: int,
        norm_layer: Callable[..., nn.Module],
    ):
        super().__init__(
            Conv3dNormActivation(
                in_planes,
                out_planes,
                kernel_size=(1, kernel_size, kernel_size),
                stride=(1, stride, stride),
                padding=(0, padding, padding),
                bias=False,
                norm_layer=norm_layer,
            ),
            Conv3dNormActivation(
                out_planes,
                out_planes,
                kernel_size=(kernel_size, 1, 1),
                stride=(stride, 1, 1),
                padding=(padding, 0, 0),
                bias=False,
                norm_layer=norm_layer,
            ),
        )


class SepInceptionBlock3D(nn.Module):
    def __init__(
        self,
        in_planes: int,
        b0_out: int,
        b1_mid: int,
        b1_out: int,
        b2_mid: int,
        b2_out: int,
        b3_out: int,
        norm_layer: Callable[..., nn.Module],
    ):
        super().__init__()

        self.branch0 = Conv3dNormActivation(in_planes, b0_out, kernel_size=1, stride=1, norm_layer=norm_layer)
        self.branch1 = nn.Sequential(
            Conv3dNormActivation(in_planes, b1_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
            TemporalSeparableConv(b1_mid, b1_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
        )
        self.branch2 = nn.Sequential(
            Conv3dNormActivation(in_planes, b2_mid, kernel_size=1, stride=1, norm_layer=norm_layer),
            TemporalSeparableConv(b2_mid, b2_out, kernel_size=3, stride=1, padding=1, norm_layer=norm_layer),
        )
        self.branch3 = nn.Sequential(
            nn.MaxPool3d(kernel_size=(3, 3, 3), stride=1, padding=1),
            Conv3dNormActivation(in_planes, b3_out, kernel_size=1, stride=1, norm_layer=norm_layer),
        )

    def forward(self, x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)
        out = torch.cat((x0, x1, x2, x3), 1)

        return out


class S3D(nn.Module):
    """S3D main class.

    Args:
        num_class (int): number of classes for the classification task.
        dropout (float): dropout probability.
        norm_layer (Optional[Callable]): Module specifying the normalization layer to use.

    Inputs:
        x (Tensor): batch of videos with dimensions (batch, channel, time, height, width)
    """

    def __init__(
        self,
        num_classes: int = 400,
        dropout: float = 0.2,
        norm_layer: Optional[Callable[..., torch.nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)

        if norm_layer is None:
            norm_layer = partial(nn.BatchNorm3d, eps=0.001, momentum=0.001)

        self.features = nn.Sequential(
            TemporalSeparableConv(3, 64, 7, 2, 3, norm_layer),
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
            Conv3dNormActivation(
                64,
                64,
                kernel_size=1,
                stride=1,
                norm_layer=norm_layer,
            ),
            TemporalSeparableConv(64, 192, 3, 1, 1, norm_layer),
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
            SepInceptionBlock3D(192, 64, 96, 128, 16, 32, 32, norm_layer),
            SepInceptionBlock3D(256, 128, 128, 192, 32, 96, 64, norm_layer),
            nn.MaxPool3d(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1)),
            SepInceptionBlock3D(480, 192, 96, 208, 16, 48, 64, norm_layer),
            SepInceptionBlock3D(512, 160, 112, 224, 24, 64, 64, norm_layer),
            SepInceptionBlock3D(512, 128, 128, 256, 24, 64, 64, norm_layer),
            SepInceptionBlock3D(512, 112, 144, 288, 32, 64, 64, norm_layer),
            SepInceptionBlock3D(528, 256, 160, 320, 32, 128, 128, norm_layer),
            nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 0, 0)),
            SepInceptionBlock3D(832, 256, 160, 320, 32, 128, 128, norm_layer),
            SepInceptionBlock3D(832, 384, 192, 384, 48, 128, 128, norm_layer),
        )
        self.avgpool = nn.AvgPool3d(kernel_size=(2, 7, 7), stride=1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=dropout),
            nn.Conv3d(1024, num_classes, kernel_size=1, stride=1, bias=True),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = self.classifier(x)
        x = torch.mean(x, dim=(2, 3, 4))
        return x


[docs]class S3D_Weights(WeightsEnum): KINETICS400_V1 = Weights( url="https://download.pytorch.org/models/s3d-d76dad2f.pth", transforms=partial( VideoClassification, crop_size=(224, 224), resize_size=(256, 256), ), meta={ "min_size": (224, 224), "min_temporal_size": 14, "categories": _KINETICS400_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification#s3d", "_docs": ( "The weights aim to approximate the accuracy of the paper. The accuracies are estimated on clip-level " "with parameters `frame_rate=15`, `clips_per_video=1`, and `clip_len=128`." ), "num_params": 8320048, "_metrics": { "Kinetics-400": { "acc@1": 68.368, "acc@5": 88.050, } }, "_ops": 17.979, "_file_size": 31.972, }, ) DEFAULT = KINETICS400_V1
[docs]@register_model() @handle_legacy_interface(weights=("pretrained", S3D_Weights.KINETICS400_V1)) def s3d(*, weights: Optional[S3D_Weights] = None, progress: bool = True, **kwargs: Any) -> S3D: """Construct Separable 3D CNN model. Reference: `Rethinking Spatiotemporal Feature Learning <https://arxiv.org/abs/1712.04851>`__. .. betastatus:: video module Args: weights (:class:`~torchvision.models.video.S3D_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.video.S3D_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.video.S3D`` base class. Please refer to the `source code <https://github.com/pytorch/vision/blob/main/torchvision/models/video/s3d.py>`_ for more details about this class. .. autoclass:: torchvision.models.video.S3D_Weights :members: """ weights = S3D_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = S3D(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True)) return model

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources