Source code for torchvision.datasets.moving_mnist
import os.path
from pathlib import Path
from typing import Callable, Optional, Union
import numpy as np
import torch
from torchvision.datasets.utils import download_url, verify_str_arg
from torchvision.datasets.vision import VisionDataset
[docs]class MovingMNIST(VisionDataset):
"""`MovingMNIST <http://www.cs.toronto.edu/~nitish/unsupervised_video/>`_ Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where ``MovingMNIST/mnist_test_seq.npy`` exists.
split (string, optional): The dataset split, supports ``None`` (default), ``"train"`` and ``"test"``.
If ``split=None``, the full data is returned.
split_ratio (int, optional): The split ratio of number of frames. If ``split="train"``, the first split
frames ``data[:, :split_ratio]`` is returned. If ``split="test"``, the last split frames ``data[:, split_ratio:]``
is returned. If ``split=None``, this parameter is ignored and the all frames data is returned.
transform (callable, optional): A function/transform that takes in a torch Tensor
and returns a transformed version. E.g, ``transforms.RandomCrop``
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
_URL = "http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy"
def __init__(
self,
root: Union[str, Path],
split: Optional[str] = None,
split_ratio: int = 10,
download: bool = False,
transform: Optional[Callable] = None,
) -> None:
super().__init__(root, transform=transform)
self._base_folder = os.path.join(self.root, self.__class__.__name__)
self._filename = self._URL.split("/")[-1]
if split is not None:
verify_str_arg(split, "split", ("train", "test"))
self.split = split
if not isinstance(split_ratio, int):
raise TypeError(f"`split_ratio` should be an integer, but got {type(split_ratio)}")
elif not (1 <= split_ratio <= 19):
raise ValueError(f"`split_ratio` should be `1 <= split_ratio <= 19`, but got {split_ratio} instead.")
self.split_ratio = split_ratio
if download:
self.download()
if not self._check_exists():
raise RuntimeError("Dataset not found. You can use download=True to download it.")
data = torch.from_numpy(np.load(os.path.join(self._base_folder, self._filename)))
if self.split == "train":
data = data[: self.split_ratio]
elif self.split == "test":
data = data[self.split_ratio :]
self.data = data.transpose(0, 1).unsqueeze(2).contiguous()
[docs] def __getitem__(self, idx: int) -> torch.Tensor:
"""
Args:
index (int): Index
Returns:
torch.Tensor: Video frames (torch Tensor[T, C, H, W]). The `T` is the number of frames.
"""
data = self.data[idx]
if self.transform is not None:
data = self.transform(data)
return data
def __len__(self) -> int:
return len(self.data)
def _check_exists(self) -> bool:
return os.path.exists(os.path.join(self._base_folder, self._filename))
def download(self) -> None:
if self._check_exists():
return
download_url(
url=self._URL,
root=self._base_folder,
filename=self._filename,
md5="be083ec986bfe91a449d63653c411eb2",
)