Source code for torchvision.datasets.kitti
import csv
import os
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union
from PIL import Image
from .utils import download_and_extract_archive
from .vision import VisionDataset
[docs]class Kitti(VisionDataset):
"""`KITTI <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark>`_ Dataset.
It corresponds to the "left color images of object" dataset, for object detection.
Args:
root (str or ``pathlib.Path``): Root directory where images are downloaded to.
Expects the following folder structure if download=False:
.. code::
<root>
└── Kitti
└─ raw
├── training
| ├── image_2
| └── label_2
└── testing
└── image_2
train (bool, optional): Use ``train`` split if true, else ``test`` split.
Defaults to ``train``.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.PILToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample
and its target as entry and returns a transformed version.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
data_url = "https://s3.eu-central-1.amazonaws.com/avg-kitti/"
resources = [
"data_object_image_2.zip",
"data_object_label_2.zip",
]
image_dir_name = "image_2"
labels_dir_name = "label_2"
def __init__(
self,
root: Union[str, Path],
train: bool = True,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
download: bool = False,
):
super().__init__(
root,
transform=transform,
target_transform=target_transform,
transforms=transforms,
)
self.images = []
self.targets = []
self.train = train
self._location = "training" if self.train else "testing"
if download:
self.download()
if not self._check_exists():
raise RuntimeError("Dataset not found. You may use download=True to download it.")
image_dir = os.path.join(self._raw_folder, self._location, self.image_dir_name)
if self.train:
labels_dir = os.path.join(self._raw_folder, self._location, self.labels_dir_name)
for img_file in os.listdir(image_dir):
self.images.append(os.path.join(image_dir, img_file))
if self.train:
self.targets.append(os.path.join(labels_dir, f"{img_file.split('.')[0]}.txt"))
[docs] def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""Get item at a given index.
Args:
index (int): Index
Returns:
tuple: (image, target), where
target is a list of dictionaries with the following keys:
- type: str
- truncated: float
- occluded: int
- alpha: float
- bbox: float[4]
- dimensions: float[3]
- locations: float[3]
- rotation_y: float
"""
image = Image.open(self.images[index])
target = self._parse_target(index) if self.train else None
if self.transforms:
image, target = self.transforms(image, target)
return image, target
def _parse_target(self, index: int) -> List:
target = []
with open(self.targets[index]) as inp:
content = csv.reader(inp, delimiter=" ")
for line in content:
target.append(
{
"type": line[0],
"truncated": float(line[1]),
"occluded": int(line[2]),
"alpha": float(line[3]),
"bbox": [float(x) for x in line[4:8]],
"dimensions": [float(x) for x in line[8:11]],
"location": [float(x) for x in line[11:14]],
"rotation_y": float(line[14]),
}
)
return target
def __len__(self) -> int:
return len(self.images)
@property
def _raw_folder(self) -> str:
return os.path.join(self.root, self.__class__.__name__, "raw")
def _check_exists(self) -> bool:
"""Check if the data directory exists."""
folders = [self.image_dir_name]
if self.train:
folders.append(self.labels_dir_name)
return all(os.path.isdir(os.path.join(self._raw_folder, self._location, fname)) for fname in folders)
def download(self) -> None:
"""Download the KITTI data if it doesn't exist already."""
if self._check_exists():
return
os.makedirs(self._raw_folder, exist_ok=True)
# download files
for fname in self.resources:
download_and_extract_archive(
url=f"{self.data_url}{fname}",
download_root=self._raw_folder,
filename=fname,
)