Shortcuts

Source code for torchvision.datasets.hmdb51

import glob
import os
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

from torch import Tensor

from .folder import find_classes, make_dataset
from .video_utils import VideoClips
from .vision import VisionDataset


[docs]class HMDB51(VisionDataset): """ `HMDB51 <https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/>`_ dataset. HMDB51 is an action recognition video dataset. This dataset consider every video as a collection of video clips of fixed size, specified by ``frames_per_clip``, where the step in frames between each clip is given by ``step_between_clips``. To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5`` and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two elements will come from video 1, and the next three elements from video 2. Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all frames in a video might be present. Internally, it uses a VideoClips object to handle clip creation. Args: root (str or ``pathlib.Path``): Root directory of the HMDB51 Dataset. annotation_path (str): Path to the folder containing the split files. frames_per_clip (int): Number of frames in a clip. step_between_clips (int): Number of frames between each clip. fold (int, optional): Which fold to use. Should be between 1 and 3. train (bool, optional): If ``True``, creates a dataset from the train split, otherwise from the ``test`` split. transform (callable, optional): A function/transform that takes in a TxHxWxC video and returns a transformed version. output_format (str, optional): The format of the output video tensors (before transforms). Can be either "THWC" (default) or "TCHW". Returns: tuple: A 3-tuple with the following entries: - video (Tensor[T, H, W, C] or Tensor[T, C, H, W]): The `T` video frames - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points - label (int): class of the video clip """ data_url = "https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/hmdb51_org.rar" splits = { "url": "https://serre-lab.clps.brown.edu/wp-content/uploads/2013/10/test_train_splits.rar", "md5": "15e67781e70dcfbdce2d7dbb9b3344b5", } TRAIN_TAG = 1 TEST_TAG = 2 def __init__( self, root: Union[str, Path], annotation_path: str, frames_per_clip: int, step_between_clips: int = 1, frame_rate: Optional[int] = None, fold: int = 1, train: bool = True, transform: Optional[Callable] = None, _precomputed_metadata: Optional[Dict[str, Any]] = None, num_workers: int = 1, _video_width: int = 0, _video_height: int = 0, _video_min_dimension: int = 0, _audio_samples: int = 0, output_format: str = "THWC", ) -> None: super().__init__(root) if fold not in (1, 2, 3): raise ValueError(f"fold should be between 1 and 3, got {fold}") extensions = ("avi",) self.classes, class_to_idx = find_classes(self.root) self.samples = make_dataset( self.root, class_to_idx, extensions, ) video_paths = [path for (path, _) in self.samples] video_clips = VideoClips( video_paths, frames_per_clip, step_between_clips, frame_rate, _precomputed_metadata, num_workers=num_workers, _video_width=_video_width, _video_height=_video_height, _video_min_dimension=_video_min_dimension, _audio_samples=_audio_samples, output_format=output_format, ) # we bookkeep the full version of video clips because we want to be able # to return the metadata of full version rather than the subset version of # video clips self.full_video_clips = video_clips self.fold = fold self.train = train self.indices = self._select_fold(video_paths, annotation_path, fold, train) self.video_clips = video_clips.subset(self.indices) self.transform = transform @property def metadata(self) -> Dict[str, Any]: return self.full_video_clips.metadata def _select_fold(self, video_list: List[str], annotations_dir: str, fold: int, train: bool) -> List[int]: target_tag = self.TRAIN_TAG if train else self.TEST_TAG split_pattern_name = f"*test_split{fold}.txt" split_pattern_path = os.path.join(annotations_dir, split_pattern_name) annotation_paths = glob.glob(split_pattern_path) selected_files = set() for filepath in annotation_paths: with open(filepath) as fid: lines = fid.readlines() for line in lines: video_filename, tag_string = line.split() tag = int(tag_string) if tag == target_tag: selected_files.add(video_filename) indices = [] for video_index, video_path in enumerate(video_list): if os.path.basename(video_path) in selected_files: indices.append(video_index) return indices def __len__(self) -> int: return self.video_clips.num_clips()
[docs] def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]: video, audio, _, video_idx = self.video_clips.get_clip(idx) sample_index = self.indices[video_idx] _, class_index = self.samples[sample_index] if self.transform is not None: video = self.transform(video) return video, audio, class_index

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources