Shortcuts

Source code for torchvision.datasets.food101

import json
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Union

import PIL.Image

from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset


[docs]class Food101(VisionDataset): """`The Food-101 Data Set <https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/>`_. The Food-101 is a challenging data set of 101 food categories with 101,000 images. For each class, 250 manually reviewed test images are provided as well as 750 training images. On purpose, the training images were not cleaned, and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels. All images were rescaled to have a maximum side length of 512 pixels. Args: root (str or ``pathlib.Path``): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default) and ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. Default is False. """ _URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz" _MD5 = "85eeb15f3717b99a5da872d97d918f87" def __init__( self, root: Union[str, Path], split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = Path(self.root) / "food-101" self._meta_folder = self._base_folder / "meta" self._images_folder = self._base_folder / "images" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") self._labels = [] self._image_files = [] with open(self._meta_folder / f"{split}.json") as f: metadata = json.loads(f.read()) self.classes = sorted(metadata.keys()) self.class_to_idx = dict(zip(self.classes, range(len(self.classes)))) for class_label, im_rel_paths in metadata.items(): self._labels += [self.class_to_idx[class_label]] * len(im_rel_paths) self._image_files += [ self._images_folder.joinpath(*f"{im_rel_path}.jpg".split("/")) for im_rel_path in im_rel_paths ] def __len__(self) -> int: return len(self._image_files)
[docs] def __getitem__(self, idx: int) -> Tuple[Any, Any]: image_file, label = self._image_files[idx], self._labels[idx] image = PIL.Image.open(image_file).convert("RGB") if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label
def extra_repr(self) -> str: return f"split={self._split}" def _check_exists(self) -> bool: return all(folder.exists() and folder.is_dir() for folder in (self._meta_folder, self._images_folder)) def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources