Shortcuts

Language Translation with TorchText

This tutorial shows how to use several convenience classes of torchtext to preprocess data from a well-known dataset containing sentences in both English and German and use it to train a sequence-to-sequence model with attention that can translate German sentences into English.

It is based off of this tutorial from PyTorch community member Ben Trevett and was created by Seth Weidman with Ben’s permission.

By the end of this tutorial, you will be able to:

Field and TranslationDataset

torchtext has utilities for creating datasets that can be easily iterated through for the purposes of creating a language translation model. One key class is a Field, which specifies the way each sentence should be preprocessed, and another is the TranslationDataset ; torchtext has several such datasets; in this tutorial we’ll use the Multi30k dataset, which contains about 30,000 sentences (averaging about 13 words in length) in both English and German.

Note: the tokenization in this tutorial requires Spacy We use Spacy because it provides strong support for tokenization in languages other than English. torchtext provides a basic_english tokenizer and supports other tokenizers for English (e.g. Moses) but for language translation - where multiple languages are required - Spacy is your best bet.

To run this tutorial, first install spacy using pip or conda. Next, download the raw data for the English and German Spacy tokenizers:

python -m spacy download en
python -m spacy download de

With Spacy installed, the following code will tokenize each of the sentences in the TranslationDataset based on the tokenizer defined in the Field

from torchtext.datasets import Multi30k
from torchtext.data import Field, BucketIterator

SRC = Field(tokenize = "spacy",
            tokenizer_language="de",
            init_token = '<sos>',
            eos_token = '<eos>',
            lower = True)

TRG = Field(tokenize = "spacy",
            tokenizer_language="en",
            init_token = '<sos>',
            eos_token = '<eos>',
            lower = True)

train_data, valid_data, test_data = Multi30k.splits(exts = ('.de', '.en'),
                                                    fields = (SRC, TRG))

Out:

downloading training.tar.gz
downloading validation.tar.gz
downloading mmt_task1_test2016.tar.gz

Now that we’ve defined train_data, we can see an extremely useful feature of torchtext’s Field: the build_vocab method now allows us to create the vocabulary associated with each language

SRC.build_vocab(train_data, min_freq = 2)
TRG.build_vocab(train_data, min_freq = 2)

Once these lines of code have been run, SRC.vocab.stoi will be a dictionary with the tokens in the vocabulary as keys and their corresponding indices as values; SRC.vocab.itos will be the same dictionary with the keys and values swapped. We won’t make extensive use of this fact in this tutorial, but this will likely be useful in other NLP tasks you’ll encounter.

BucketIterator

The last torchtext specific feature we’ll use is the BucketIterator, which is easy to use since it takes a TranslationDataset as its first argument. Specifically, as the docs say: Defines an iterator that batches examples of similar lengths together. Minimizes amount of padding needed while producing freshly shuffled batches for each new epoch. See pool for the bucketing procedure used.

import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

BATCH_SIZE = 128

train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
    (train_data, valid_data, test_data),
    batch_size = BATCH_SIZE,
    device = device)

These iterators can be called just like DataLoader``s; below, in the ``train and evaluate functions, they are called simply with:

for i, batch in enumerate(iterator):

Each batch then has src and trg attributes:

src = batch.src
trg = batch.trg

Defining our nn.Module and Optimizer

That’s mostly it from a torchtext perspecive: with the dataset built and the iterator defined, the rest of this tutorial simply defines our model as an nn.Module, along with an Optimizer, and then trains it.

Our model specifically, follows the architecture described here (you can find a significantly more commented version here).

Note: this model is just an example model that can be used for language translation; we choose it because it is a standard model for the task, not because it is the recommended model to use for translation. As you’re likely aware, state-of-the-art models are currently based on Transformers; you can see PyTorch’s capabilities for implementing Transformer layers here; and in particular, the “attention” used in the model below is different from the multi-headed self-attention present in a transformer model.

import random
from typing import Tuple

import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import Tensor


class Encoder(nn.Module):
    def __init__(self,
                 input_dim: int,
                 emb_dim: int,
                 enc_hid_dim: int,
                 dec_hid_dim: int,
                 dropout: float):
        super().__init__()

        self.input_dim = input_dim
        self.emb_dim = emb_dim
        self.enc_hid_dim = enc_hid_dim
        self.dec_hid_dim = dec_hid_dim
        self.dropout = dropout

        self.embedding = nn.Embedding(input_dim, emb_dim)

        self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)

        self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)

        self.dropout = nn.Dropout(dropout)

    def forward(self,
                src: Tensor) -> Tuple[Tensor]:

        embedded = self.dropout(self.embedding(src))

        outputs, hidden = self.rnn(embedded)

        hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))

        return outputs, hidden


class Attention(nn.Module):
    def __init__(self,
                 enc_hid_dim: int,
                 dec_hid_dim: int,
                 attn_dim: int):
        super().__init__()

        self.enc_hid_dim = enc_hid_dim
        self.dec_hid_dim = dec_hid_dim

        self.attn_in = (enc_hid_dim * 2) + dec_hid_dim

        self.attn = nn.Linear(self.attn_in, attn_dim)

    def forward(self,
                decoder_hidden: Tensor,
                encoder_outputs: Tensor) -> Tensor:

        src_len = encoder_outputs.shape[0]

        repeated_decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, src_len, 1)

        encoder_outputs = encoder_outputs.permute(1, 0, 2)

        energy = torch.tanh(self.attn(torch.cat((
            repeated_decoder_hidden,
            encoder_outputs),
            dim = 2)))

        attention = torch.sum(energy, dim=2)

        return F.softmax(attention, dim=1)


class Decoder(nn.Module):
    def __init__(self,
                 output_dim: int,
                 emb_dim: int,
                 enc_hid_dim: int,
                 dec_hid_dim: int,
                 dropout: int,
                 attention: nn.Module):
        super().__init__()

        self.emb_dim = emb_dim
        self.enc_hid_dim = enc_hid_dim
        self.dec_hid_dim = dec_hid_dim
        self.output_dim = output_dim
        self.dropout = dropout
        self.attention = attention

        self.embedding = nn.Embedding(output_dim, emb_dim)

        self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)

        self.out = nn.Linear(self.attention.attn_in + emb_dim, output_dim)

        self.dropout = nn.Dropout(dropout)


    def _weighted_encoder_rep(self,
                              decoder_hidden: Tensor,
                              encoder_outputs: Tensor) -> Tensor:

        a = self.attention(decoder_hidden, encoder_outputs)

        a = a.unsqueeze(1)

        encoder_outputs = encoder_outputs.permute(1, 0, 2)

        weighted_encoder_rep = torch.bmm(a, encoder_outputs)

        weighted_encoder_rep = weighted_encoder_rep.permute(1, 0, 2)

        return weighted_encoder_rep


    def forward(self,
                input: Tensor,
                decoder_hidden: Tensor,
                encoder_outputs: Tensor) -> Tuple[Tensor]:

        input = input.unsqueeze(0)

        embedded = self.dropout(self.embedding(input))

        weighted_encoder_rep = self._weighted_encoder_rep(decoder_hidden,
                                                          encoder_outputs)

        rnn_input = torch.cat((embedded, weighted_encoder_rep), dim = 2)

        output, decoder_hidden = self.rnn(rnn_input, decoder_hidden.unsqueeze(0))

        embedded = embedded.squeeze(0)
        output = output.squeeze(0)
        weighted_encoder_rep = weighted_encoder_rep.squeeze(0)

        output = self.out(torch.cat((output,
                                     weighted_encoder_rep,
                                     embedded), dim = 1))

        return output, decoder_hidden.squeeze(0)


class Seq2Seq(nn.Module):
    def __init__(self,
                 encoder: nn.Module,
                 decoder: nn.Module,
                 device: torch.device):
        super().__init__()

        self.encoder = encoder
        self.decoder = decoder
        self.device = device

    def forward(self,
                src: Tensor,
                trg: Tensor,
                teacher_forcing_ratio: float = 0.5) -> Tensor:

        batch_size = src.shape[1]
        max_len = trg.shape[0]
        trg_vocab_size = self.decoder.output_dim

        outputs = torch.zeros(max_len, batch_size, trg_vocab_size).to(self.device)

        encoder_outputs, hidden = self.encoder(src)

        # first input to the decoder is the <sos> token
        output = trg[0,:]

        for t in range(1, max_len):
            output, hidden = self.decoder(output, hidden, encoder_outputs)
            outputs[t] = output
            teacher_force = random.random() < teacher_forcing_ratio
            top1 = output.max(1)[1]
            output = (trg[t] if teacher_force else top1)

        return outputs


INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
# ENC_EMB_DIM = 256
# DEC_EMB_DIM = 256
# ENC_HID_DIM = 512
# DEC_HID_DIM = 512
# ATTN_DIM = 64
# ENC_DROPOUT = 0.5
# DEC_DROPOUT = 0.5

ENC_EMB_DIM = 32
DEC_EMB_DIM = 32
ENC_HID_DIM = 64
DEC_HID_DIM = 64
ATTN_DIM = 8
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5

enc = Encoder(INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, ENC_DROPOUT)

attn = Attention(ENC_HID_DIM, DEC_HID_DIM, ATTN_DIM)

dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, ENC_HID_DIM, DEC_HID_DIM, DEC_DROPOUT, attn)

model = Seq2Seq(enc, dec, device).to(device)


def init_weights(m: nn.Module):
    for name, param in m.named_parameters():
        if 'weight' in name:
            nn.init.normal_(param.data, mean=0, std=0.01)
        else:
            nn.init.constant_(param.data, 0)


model.apply(init_weights)

optimizer = optim.Adam(model.parameters())


def count_parameters(model: nn.Module):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


print(f'The model has {count_parameters(model):,} trainable parameters')

Out:

The model has 1,856,685 trainable parameters

Note: when scoring the performance of a language translation model in particular, we have to tell the nn.CrossEntropyLoss function to ignore the indices where the target is simply padding.

PAD_IDX = TRG.vocab.stoi['<pad>']

criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX)

Finally, we can train and evaluate this model:

import math
import time


def train(model: nn.Module,
          iterator: BucketIterator,
          optimizer: optim.Optimizer,
          criterion: nn.Module,
          clip: float):

    model.train()

    epoch_loss = 0

    for _, batch in enumerate(iterator):

        src = batch.src
        trg = batch.trg

        optimizer.zero_grad()

        output = model(src, trg)

        output = output[1:].view(-1, output.shape[-1])
        trg = trg[1:].view(-1)

        loss = criterion(output, trg)

        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)

        optimizer.step()

        epoch_loss += loss.item()

    return epoch_loss / len(iterator)


def evaluate(model: nn.Module,
             iterator: BucketIterator,
             criterion: nn.Module):

    model.eval()

    epoch_loss = 0

    with torch.no_grad():

        for _, batch in enumerate(iterator):

            src = batch.src
            trg = batch.trg

            output = model(src, trg, 0) #turn off teacher forcing

            output = output[1:].view(-1, output.shape[-1])
            trg = trg[1:].view(-1)

            loss = criterion(output, trg)

            epoch_loss += loss.item()

    return epoch_loss / len(iterator)


def epoch_time(start_time: int,
               end_time: int):
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs


N_EPOCHS = 10
CLIP = 1

best_valid_loss = float('inf')

for epoch in range(N_EPOCHS):

    start_time = time.time()

    train_loss = train(model, train_iterator, optimizer, criterion, CLIP)
    valid_loss = evaluate(model, valid_iterator, criterion)

    end_time = time.time()

    epoch_mins, epoch_secs = epoch_time(start_time, end_time)

    print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. PPL: {math.exp(valid_loss):7.3f}')

test_loss = evaluate(model, test_iterator, criterion)

print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')

Out:

Epoch: 01 | Time: 0m 36s
        Train Loss: 5.677 | Train PPL: 292.200
         Val. Loss: 5.262 |  Val. PPL: 192.947
Epoch: 02 | Time: 0m 35s
        Train Loss: 5.028 | Train PPL: 152.646
         Val. Loss: 5.144 |  Val. PPL: 171.456
Epoch: 03 | Time: 0m 35s
        Train Loss: 4.807 | Train PPL: 122.368
         Val. Loss: 5.009 |  Val. PPL: 149.776
Epoch: 04 | Time: 0m 35s
        Train Loss: 4.645 | Train PPL: 104.067
         Val. Loss: 5.028 |  Val. PPL: 152.627
Epoch: 05 | Time: 0m 35s
        Train Loss: 4.524 | Train PPL:  92.224
         Val. Loss: 5.023 |  Val. PPL: 151.841
Epoch: 06 | Time: 0m 35s
        Train Loss: 4.431 | Train PPL:  84.013
         Val. Loss: 4.919 |  Val. PPL: 136.835
Epoch: 07 | Time: 0m 35s
        Train Loss: 4.350 | Train PPL:  77.444
         Val. Loss: 4.824 |  Val. PPL: 124.467
Epoch: 08 | Time: 0m 35s
        Train Loss: 4.272 | Train PPL:  71.676
         Val. Loss: 4.816 |  Val. PPL: 123.484
Epoch: 09 | Time: 0m 38s
        Train Loss: 4.214 | Train PPL:  67.656
         Val. Loss: 4.721 |  Val. PPL: 112.248
Epoch: 10 | Time: 0m 37s
        Train Loss: 4.135 | Train PPL:  62.478
         Val. Loss: 4.863 |  Val. PPL: 129.446
| Test Loss: 4.894 | Test PPL: 133.458 |

Next steps

  • Check out the rest of Ben Trevett’s tutorials using torchtext here
  • Stay tuned for a tutorial using other torchtext features along with nn.Transformer for language modeling via next word prediction!

Total running time of the script: ( 6 minutes 13.371 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources