Shortcuts

Source code for torchtune.modules.tokenizers._sentencepiece

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import List, Optional

from sentencepiece import SentencePieceProcessor
from torchtune.modules.tokenizers._utils import BaseTokenizer

WHITESPACE_CHARS = [" ", "\n", "\t", "\r", "\v"]


[docs]class SentencePieceBaseTokenizer(BaseTokenizer): """ A light-weight wrapper around SentencePieceProcessor that additionally handles trimming leading whitespaces. Args: path (str): Path to pretrained tokenizer file. Examples: >>> tokenizer = SentencePieceBaseTokenizer("/path/to/spm_model") >>> tokenized_text = tokenizer.encode("Hello world!", add_bos=True, add_eos=True) >>> print(tokenized_text) [1, 31587, 29644, 102, 2] """ def __init__( self, path: str, ): spm_model = SentencePieceProcessor() spm_model.load(path) self.spm_model = spm_model self.vocab_size = spm_model.vocab_size() self.bos_id = spm_model.bos_id() self.eos_id = spm_model.eos_id() self.pad_id = spm_model.pad_id() # If the tokenizer does not encode whitespace, # then we can more easily split strings # on whitespace characters and encode them separately. self.encodes_whitespace = any( [self.spm_model.encode(c) for c in WHITESPACE_CHARS] )
[docs] def encode( self, text: str, add_bos: bool = True, add_eos: bool = True, trim_leading_whitespace: bool = False, prefix: Optional[str] = None, ) -> List[int]: """Encode text into token IDs. Args: text (str): The input text to be encoded, unbatched. add_bos (bool): Whether to prepend BOS to the input, defaults to True. add_eos (bool): Whether to append EOS to the input, defaults to True. trim_leading_whitespace (bool): Whether to trim leading whitespace from underlying sentencepiece tokenization. Sentencepiece normally prepends whitespace to any tokenized text, which can cause differences where ``encode(s1) + encode(s2) != encode(s1 + s2)`` due to leading whitespace added to s2. This will only trim leading whitespace if the underlying ``SentencePieceProcessor`` encodes whitespace. Default: False prefix (Optional[str]): Optional string to encode for trimming leading whitespaces. Used only if trim_leading_whitespace=True. Default: None Returns: List[int]: The encoded token IDs. """ # We typically trim leading whitespace on the next message when # it is a continuation of the turn (i.e. not the first message) # or the previous message did not end with a space. This is handled # by the caller of this method. We only need to trim leading whitespace # if the underlying SentencePieceProcessor encodes whitespace. if trim_leading_whitespace and self.encodes_whitespace: # Can define our own custom prefix depending on vocab if needed if not hasattr(self, "prefix"): self.prefix = prefix or "\n" self.encoded_prefix = self.spm_model.encode( self.prefix, add_bos=False, add_eos=False ) start_idx = len(self.encoded_prefix) + int(add_bos) return self.spm_model.encode( self.prefix + text, add_bos=add_bos, add_eos=add_eos, out_type=int, )[start_idx:] else: return self.spm_model.encode( text, add_bos=add_bos, add_eos=add_eos, out_type=int, )
[docs] def decode(self, ids: List[int]) -> str: """Decode token IDs to strings. Args: ids (List[int]): The input token IDs to be decoded. Returns: str: The decoded text. """ return self.spm_model.decode(ids)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources