Shortcuts

Source code for torchft.process_group

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

"""
Process Groups
=========================

This module implements fault tolerant process groups that can be reconfigured
and resized at runtime.

These extend the standard PyTorch ProcessGroup API and can be used in most
places that would accept a standard process group. As these can change size at
runtime users need to take care to not assume a static rank or world size.
"""

import logging
import queue
import threading
from abc import ABC
from datetime import timedelta
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Type, Union

import torch
import torch.distributed as dist
import torch.multiprocessing as mp

# pyre-fixme[21]: no attribute ProcessGroupNCCL
# pyre-fixme[21]: no attribute ProcessGroupGloo
from torch.distributed import (
    BroadcastOptions,
    DeviceMesh,
    PrefixStore,
    ProcessGroup as BaseProcessGroup,
    ProcessGroupGloo as BaseProcessGroupGloo,
    ProcessGroupNCCL as BaseProcessGroupNCCL,
    Store,
    TCPStore,
    get_rank,
    init_device_mesh,
)
from torch.distributed.distributed_c10d import Work, _world
from torch.futures import Future

if TYPE_CHECKING:
    from torchft.manager import Manager

logger: logging.Logger = logging.getLogger(__name__)

# TODO: use non strings which are cheaper
_QUEUE_CLOSE = "queue_close"
_FUTURE_RESULT = "fut_result"
_FUTURE_EXCEPTION = "fut_exception"


def _get(q: mp.Queue, timeout: Union[float, timedelta]) -> object:
    """
    Gets an item from a queue with a timeout. If the timeout is exceeded then
    a TimeoutError is raised.

    If an exception is returned from the queue then it is raised.

    Args:
        q: queue to get from
        timeout: timeout in seconds
    """
    if isinstance(timeout, timedelta):
        timeout = timeout.total_seconds()
    try:
        v = q.get(timeout=timeout)
    except queue.Empty as e:
        raise TimeoutError(f"queue.get() timed out after {timeout} seconds") from e
    if isinstance(v, Exception):
        raise v
    return v


[docs]def create_store_client(store_addr: str) -> Store: """ Creates a PrefixStore(TCPStore(...)) client from an address in the format: host:port/prefix Ex: localhost:1234/my/prefix """ host, _, rest = store_addr.partition(":") port, _, prefix = rest.partition("/") store = TCPStore( host_name=host, port=int(port), is_master=False, wait_for_workers=False, ) store = PrefixStore(prefix, store) return store
[docs]class ProcessGroup(BaseProcessGroup): def __init__(self, *args: object, **kwargs: object) -> None: # pyre-fixme[6]: got object super().__init__(*args, **kwargs) self._group_name: Optional[str] = None
[docs] def configure(self, store_addr: str, rank: int, world_size: int) -> None: """ This reconfigures the ProcessGroup to use a new store, rank and world size. Every time this is called it must be provided with a unique prefixed store address. I.e. localhost:1234/my/prefix/1 This function will block until the underlying ProcessGroup is created. If an error occurs this will throw. Args: store_addr: address of the store to use rank: rank of this process world_size: world size of this process group """ raise NotImplementedError("not implemented")
# pyre-fixme[14]: inconsistent override
[docs] def allreduce(self, tensors: List[torch.Tensor], opts: object) -> Work: raise NotImplementedError("not implemented")
# pyre-fixme[14]: inconsistent override
[docs] def allgather( self, output_tensors: List[List[torch.Tensor]], input_tensor: List[torch.Tensor], opts: object, ) -> Work: raise NotImplementedError("not implemented")
# pyre-fixme[14]: inconsistent override
[docs] def broadcast(self, tensor_list: List[torch.Tensor], opts: object) -> Work: raise NotImplementedError("not implemented")
[docs] def broadcast_one(self, tensor: torch.Tensor, root: int) -> Work: opts = BroadcastOptions() opts.rootRank = root return self.broadcast([tensor], opts)
[docs] def size(self) -> int: raise NotImplementedError("not implemented")
[docs] def getBackendName(self) -> str: raise NotImplementedError("not implemented")
def _register(self, name: str) -> str: group_name = f"{self.getBackendName()}:{name}" # This is needed for DeviceMesh and functional collectives to work. # Resizable worlds don't fit well into DeviceMesh so we register a world # size 1 PG. def create_pg( prefix_store: PrefixStore, rank: int, world_size: int, timeout: float ) -> ProcessGroup: return self if torch.cuda.is_available(): devices = ["cuda", "cpu"] else: devices = ["cpu"] dist.Backend.register_backend(group_name, create_pg, devices=devices) return group_name
[docs] def register(self, name: str) -> "ProcessGroup": """ Registers the process group with the global registry. This enables usage with things like functional_collectives which are compilable. This should only be called once. Args: name: name must be a unique name for this process group """ group_name = self._register(name) return dist.new_group( ranks=[dist.get_rank()], backend=group_name, group_desc=group_name, timeout=timedelta(seconds=60.0), # this timeout isn't used )
@property def group_name(self) -> str: if self._group_name is None: raise ValueError("ProcessGroup name not set") return self._group_name def _set_group_name(self, name: str) -> None: self._group_name = name
[docs] def unregister(self) -> None: """ Unregisters the process group with the global registry. Must be registered first. """ dist.destroy_process_group(self)
def __repr__(self) -> str: return f"{self.__class__.__name__}()"
[docs]class ProcessGroupWrapper(ProcessGroup): """ This is a wrapper around any ProcessGroup with a reconfiguration method. """ def __init__(self, pg: Optional[ProcessGroup] = None) -> None: super().__init__(0, 1) self._pg: Optional[BaseProcessGroup] = pg
[docs] def configure(self, store_addr: str, rank: int, world_size: int) -> None: pg = self._pg if isinstance(pg, ProcessGroup): pg.configure(store_addr, rank, world_size) return if pg is not None: if hasattr(pg, "abort"): pg.abort() # pyre-fixme[16]: no attribute abort self._pg = None store = create_store_client(store_addr) self._pg = self._create_pg(store, rank, world_size)
def _create_pg(self, store: Store, rank: int, world_size: int) -> BaseProcessGroup: raise NotImplementedError("not implemented")
[docs] def allreduce(self, tensors: List[torch.Tensor], opts: object) -> Work: return self.parent.allreduce(tensors, opts)
[docs] def allgather( self, output_tensors: List[List[torch.Tensor]], input_tensor: List[torch.Tensor], opts: object, ) -> Work: return self.parent.allgather(output_tensors, input_tensor, opts)
[docs] def broadcast(self, tensor_list: List[torch.Tensor], opts: object) -> Work: return self.parent.broadcast(tensor_list, opts)
[docs] def size(self) -> int: return self.parent.size()
@property def parent(self) -> BaseProcessGroup: assert self._pg is not None, "process group not initialized" return self._pg def __repr__(self) -> str: return f"{self.__class__.__name__}(pg={self._pg})"
[docs]class ProcessGroupGloo(ProcessGroupWrapper): """ This is a reconfigurable version of ProcessGroupGloo. """ def __init__(self, timeout: timedelta = timedelta(seconds=60.0)) -> None: super().__init__() self._timeout = timeout def _create_pg(self, store: Store, rank: int, world_size: int) -> BaseProcessGroup: # pyre-fixme[16]: no attribute ProcessGroupGloo return BaseProcessGroupGloo(store, rank, world_size, self._timeout)
[docs] def getBackendName(self) -> str: return "torchft-gloo"
[docs]class ProcessGroupNCCL(ProcessGroupWrapper): """ This is a reconfigurable version of ProcessGroupNCCL. WARNING: this may result in deadlocks due to NCCL error handling. This is provided for completeness but your mileage may vary. TODO: verify shutdown correctness with latest NCCL. This currently will call abort when reconfiguring, we need to ensure this is safe. """ def _create_pg(self, store: Store, rank: int, world_size: int) -> BaseProcessGroup: # pyre-fixme[16]: no attribute ProcessGroupNCCL return BaseProcessGroupNCCL(store, rank, world_size)
[docs] def getBackendName(self) -> str: return "torchft-nccl"
class _DummyWork(dist._Work): def __init__(self, result: object) -> None: super().__init__() self.result_ = result # pyre-fixme[29]: Future is not a function self.future_: torch.futures.Future[object] = torch.futures.Future() self.future_.set_result(result) def wait(self, timeout: Optional[timedelta] = None) -> bool: return True def get_future(self) -> torch.futures.Future[object]: return self.future_
[docs]class ProcessGroupDummy(ProcessGroup): """ This process group discards all data passed to it and returns success. This is intended for rare cases where we want to discard certain operations without modifying the underlying library. This PG only supports world_size of 1. """ def __init__(self, rank: int, world: int) -> None: super().__init__(rank, world) assert rank == 0 assert world == 1 self._rank = rank self._world = world self.wait_count = 0 self.get_future_count = 0 self._work: List[Work] = [] self.configure_count = 0
[docs] def configure(self, store_addr: str, rank: int, world_size: int) -> None: self.configure_count += 1
[docs] def broadcast(self, tensor_list: List[torch.Tensor], opts: object) -> Work: res = _DummyWork(tensor_list) self._work.append(res) return res
[docs] def allgather( self, output_tensors: List[List[torch.Tensor]], input_tensor: List[torch.Tensor], opts: object, ) -> Work: for o, i in zip(output_tensors[0], input_tensor): o.copy_(i) res = _DummyWork(output_tensors) self._work.append(res) return res
[docs] def allreduce(self, tensors: List[torch.Tensor], opts: object) -> Work: res = _DummyWork(tensors) self._work.append(res) return res
[docs] def size(self) -> int: return self._world
[docs] def getBackendName(self) -> str: return "torchft-dummy"
class _ErrorSwallowingWork(Work): def __init__( self, pg: "ErrorSwallowingProcessGroupWrapper", work: Work, default_result: object, ) -> None: super().__init__() self._pg = pg self._work = work self._default_result = default_result def wait(self, timeout: Optional[timedelta] = None) -> bool: try: self._work.wait() except Exception as e: self._pg.report_error(e) return True def get_future(self) -> Future[object]: fut = self._work.get_future() # schedule error handling as a continuation on the Future def callback( fut: torch.futures.Future[List[torch.Tensor]], ) -> object: try: return fut.value() except Exception as e: logger.exception(f"got exception in future -- skipping remaining: {e}") self._pg.report_error(e) return self._default_result fut = fut.then(callback) return fut
[docs]class ErrorSwallowingProcessGroupWrapper(ProcessGroupWrapper): """ This is a wrapper around any ProcessGroup that will swallow errors and return dummy results on error. This is intended to allow handling errors outside of the training loop to avoid having to modify modeling code to support error handling. After an error occurs all future operations will be skipped until the process group is reconfigured via ``configure``. """ def __init__(self, pg: ProcessGroup) -> None: super().__init__(pg) self._error: Optional[Exception] = None
[docs] def configure(self, store_addr: str, rank: int, world_size: int) -> None: self._error = None super().configure(store_addr, rank, world_size)
[docs] def report_error(self, e: Exception) -> None: """ Report an error to this process group. This will cause all future operations to be skipped until the process group is reconfigured via ``configure``. Args: e: exception to report """ self._error = e
[docs] def error(self) -> Optional[Exception]: """ Returns the error that was reported to this process group. Returns: exception that was reported """ return self._error
[docs] def allreduce(self, tensors: List[torch.Tensor], opts: object) -> Work: if self._error is not None: return _DummyWork(tensors) try: return _ErrorSwallowingWork( self, super().allreduce(tensors, opts), tensors, ) except Exception as e: self.report_error(e) return _DummyWork(tensors)
class _ManagedWork(Work): def __init__(self, manager: "Manager", work: Work, default_result: object) -> None: super().__init__() self._manager = manager self._work = work self._default_result = default_result def wait(self, timeout: Optional[timedelta] = None) -> bool: try: if timeout is not None: self._work.wait(timeout) else: self._work.wait() except Exception as e: self._manager.report_error(e) return True def get_future(self) -> Future[object]: return self._manager.wrap_future(self._work.get_future(), self._default_result)
[docs]class ManagedProcessGroup(ProcessGroupWrapper): """ This is a wrapper around any ProcessGroup that is managed by a torchft Manager. This uses the ProcessGroup that is configured in the Manager. The world size is dynamic and will report the number of active particpants in the quorum to the model. Any errors will be asynchronously reported to the manager and only successes will be returned to the caller. """ def __init__(self, manager: "Manager") -> None: super().__init__(manager._pg) self._manager = manager
[docs] def allreduce(self, tensors: List[torch.Tensor], opts: object) -> Work: if self._manager.errored() is not None: return _DummyWork(tensors) try: work = super().allreduce(tensors, opts) except Exception as e: self._manager.report_error(e) return _DummyWork(tensors) return _ManagedWork( self._manager, work, tensors, )
[docs] def size(self) -> int: return self._manager.num_participants()
[docs] def getBackendName(self) -> str: return self._manager._pg.getBackendName()
class _BabyWork(Work): def __init__( self, pg: "ProcessGroupBaby", tx: mp.Queue, rx: mp.Queue, op_id: int, timeout: float, ) -> None: super().__init__() self._pg = pg self._tx = tx self._rx = rx self._op_id = op_id self._timeout = timeout def wait(self, timeout: Optional[timedelta] = None) -> bool: self._tx.put(("wait", self._op_id), timeout=self._timeout) assert _get(self._rx, self._timeout) == self._op_id return True def get_future(self) -> Future[object]: return self._pg._get_future(self._op_id) class _BabyWorkNCCL(_BabyWork): def wait(self, timeout: Optional[timedelta] = None) -> bool: self._tx.put(("synchronize", self._op_id), timeout=self._timeout) # pyre-fixme[23]: unable to unpack into 2 values op_id, event = _get(self._rx, self._timeout) assert op_id == self._op_id assert isinstance(event, torch.cuda.Event) # Wait on Event makes the stream wait but not the CPU thread. event.wait() return True
[docs]class ProcessGroupBaby(ProcessGroup): """ This is a process group that runs the underlying process group in a subprocess. Since it's running in a subprocess all tensors need to be in shared memory or will be moved to shared memory. CUDA tensors are implicitly share able and don't need any changes. """ WORK_CLASS: Type[_BabyWork] = _BabyWork def __init__(self, timeout: Union[float, timedelta] = 60.0) -> None: super().__init__(0, 1) self._world_size = -1 self._p: Optional[mp.Process] = None self._tx: Optional[mp.Queue] = None self._rx: Optional[mp.Queue] = None self._future_queue: Optional[mp.Queue] = None self._future_thread: Optional[threading.Thread] = None self._futures: Dict[int, Future[object]] = {} self._futures_lock = threading.Lock() if isinstance(timeout, timedelta): timeout = timeout.total_seconds() self._timeout: float = timeout
[docs] def configure(self, store_addr: str, rank: int, world_size: int) -> None: if self._p is not None: self._p.kill() self._world_size = world_size if self._tx is not None: self._tx.close() if self._rx is not None: self._rx.close() if self._future_queue is not None: self._future_queue.put(_QUEUE_CLOSE) assert self._future_queue is not None self._future_queue.close() ctx = mp.get_context("spawn") self._tx = ctx.Queue() self._rx = rx = ctx.Queue() # futures need thread to fire callbacks self._future_queue = ctx.Queue() # this lock needs to be held when manipulating _futures self._futures_lock = threading.Lock() self._futures = {} self._future_thread = threading.Thread( target=self._future_handler, args=(self._future_queue,), daemon=True, ) self._future_thread.start() self._p = ctx.Process( target=self._worker, args=(store_addr, rank, world_size, self._tx, self._rx, self._future_queue), daemon=True, ) self._p.start() # fetch the status of the PG init # if an exception was returned _get will throw assert _get(rx, self._timeout) is None
@classmethod def _create_pg(cls, store: Store, rank: int, world_size: int) -> BaseProcessGroup: """ This is a class method to avoid pickling the class. """ raise NotImplementedError("not implemented") @classmethod def _worker( cls, store_addr: str, rank: int, world_size: int, rx: mp.Queue, tx: mp.Queue, future_queue: mp.Queue, ) -> None: try: store = create_store_client(store_addr) try: pg = cls._create_pg(store, rank, world_size) except Exception as e: logger.exception(f"got exception in worker: {e}") tx.put(e) return tx.put(None) work = {} next_op_id: int = 0 while True: op = rx.get() cmd = op[0] if cmd == "func": func_name, args, kwargs = op[1:] fn = getattr(pg, func_name) work[next_op_id] = fn(*args, **kwargs) tx.put(next_op_id) next_op_id += 1 elif cmd == "wait": op_id: int = op[1] work[op_id].wait() del work[op_id] tx.put(op_id) elif cmd == "future": op_id: int = op[1] def callback(fut: Future[object]) -> None: try: fut.wait() future_queue.put((op_id, _FUTURE_RESULT, None)) except Exception as e: future_queue.put((op_id, _FUTURE_EXCEPTION, e)) work[op_id].get_future().add_done_callback(callback) tx.put(op_id) elif cmd == "synchronize": # CUDA only, use events instead of waiting on CPU op_id = op[1] # With WorkNCCL this makes the stream wait not the CPU when # no timeout is passed. work[op_id].wait() # Register event on the stream that we can pass to the main # process. event = torch.cuda.Event(interprocess=True) event.record() del work[op_id] tx.put((op_id, event)) else: raise ValueError(f"unknown cmd: {cmd}") except Exception as e: logger.exception("worker errored") tx.put(e) def _future_handler(self, future_queue: mp.Queue) -> None: try: while True: cmd = future_queue.get() if cmd == _QUEUE_CLOSE: break op_id, mode, data = cmd with self._futures_lock: fut = self._futures[op_id] del self._futures[op_id] if mode == _FUTURE_RESULT: fut.set_result(data) elif mode == _FUTURE_EXCEPTION: fut.set_exception(data) else: raise ValueError(f"unknown mode {mode}") except Exception as e: logger.exception(f"got unexpected error in future handler: {e}") def _get_future(self, op_id: int) -> Future[object]: with self._futures_lock: fut = Future() # pyre-fixme[29]: is not a function self._futures[op_id] = fut assert self._tx is not None self._tx.put(("future", op_id), timeout=self._timeout) assert self._rx is not None assert _get(self._rx, self._timeout) == op_id # TODO: return correct tensor instead of None return fut def _run_func(self, func: str, *args: object, **kwargs: object) -> Work: rx = self._rx tx = self._tx assert rx is not None assert tx is not None tx.put(("func", func, args, kwargs), timeout=self._timeout) op_id = _get(rx, self._timeout) assert isinstance(op_id, int), f"invalid return {op_id}" return self.WORK_CLASS( pg=self, tx=tx, rx=rx, op_id=op_id, timeout=self._timeout )
[docs] def allreduce(self, tensors: List[torch.Tensor], opts: object) -> Work: assert isinstance(tensors, list), "input must be list" for tensor in tensors: if not tensor.is_shared(): tensor.share_memory_() return self._run_func("allreduce", tensors, opts)
[docs] def size(self) -> int: return self._world_size
[docs]class ProcessGroupBabyGloo(ProcessGroupBaby): """ This is a ProcessGroup that runs Gloo in a subprocess. For most use cases you should prefer ProcessGroupGloo or ProcessGroupBabyNCCL. """ @classmethod def _create_pg(cls, store: Store, rank: int, world_size: int) -> BaseProcessGroup: # pyre-fixme[16]: no attribute ProcessGroupGloo return BaseProcessGroupGloo(store, rank, world_size)
[docs] def getBackendName(self) -> str: return "torchft-baby-gloo"
[docs]class ProcessGroupBabyNCCL(ProcessGroupBaby): """ This is a ProcessGroup that runs NCCL in a subprocess. For the NCCL backend, extra memory will be used by the subprocesses CUDA context compared to running NCCL in the main process. This is typically around ~1GB. The returned Work objects only synchronize on the cuda stream and not on the CPU side. This works by passing CUDA Events between the processes. To do a CPU synchronize, call torch.cuda.synchronize() after wait(). WARNING: If the child process is killed while an operation is running, CUDA tensors may leak in the current PyTorch implementation. TODO fix """ WORK_CLASS = _BabyWorkNCCL @classmethod def _create_pg(cls, store: Store, rank: int, world_size: int) -> BaseProcessGroup: # pyre-fixme[16]: no attribute ProcessGroupNCCL return BaseProcessGroupNCCL(store, rank, world_size)
[docs] def getBackendName(self) -> str: return "torchft-baby-nccl"
[docs]def extend_device_mesh( mesh: DeviceMesh, pg: ProcessGroup, name: str = "dp", dim: int = 0 ) -> DeviceMesh: """ This is a helper method to extend a traditional DeviceMesh with a torchft ProcessGroup for usage with DeviceMesh based APIs such as FSDPv2 with hybrid sharding. Resizable PGs aren't natively supported by DeviceMesh so we lie to DeviceMesh and say the PG is world size 1. This is fine as long as any numeric scaling is handled at the PG level. Args: mesh: The DeviceMesh to extend pg: The ProcessGroup to add to the mesh name: The name of the new dimension dim: The dimension to add the ProcessGroup to """ groups = mesh.get_all_groups() groups.insert(dim, pg) mesh_dim_names = list(mesh.mesh_dim_names or []) mesh_dim_names.insert(dim, name) return DeviceMesh.from_group( group=groups, device_type=mesh.device_type, mesh=mesh.mesh.unsqueeze(dim), mesh_dim_names=tuple(mesh_dim_names), )
[docs]class ManagedDeviceMesh(DeviceMesh): def __init__( self, mesh: Optional[DeviceMesh], mesh_dim_names: Tuple[str, ...], replicate_pg: ManagedProcessGroup, replicate_dim: int, parent: Optional["ManagedDeviceMesh"], ) -> None: if mesh is None and parent is None: raise ValueError( "ManagedDeviceMesh doesn't support both mesh and parent are None." ) self.mesh = mesh self.mesh_dim_names = mesh_dim_names self.replicate_pg = replicate_pg self.replicate_dim = replicate_dim self.replicate_dim_name: str = mesh_dim_names[replicate_dim] self.parent = parent self.flatten_meshes: Dict[str, DeviceMesh] = {} self.device_type: str if mesh is not None: self.device_type = mesh.device_type else: assert parent is not None self.device_type = parent.device_type self._flatten_mesh_list: Tuple[DeviceMesh, ...] = tuple() self._thread_id: Optional[int] = None def __getitem__(self, mesh_dim_names: Union[str, Tuple[str, ...]]) -> DeviceMesh: if isinstance(mesh_dim_names, str): if mesh_dim_names == self.replicate_dim_name: return ManagedDeviceMesh( mesh=None, mesh_dim_names=(mesh_dim_names,), replicate_pg=self.replicate_pg, replicate_dim=0, parent=self, ) elif mesh_dim_names in self.flatten_meshes: return self.flatten_meshes[mesh_dim_names] else: assert self.mesh is not None return self.mesh[mesh_dim_names] else: assert isinstance(mesh_dim_names, tuple) if self.replicate_dim_name in mesh_dim_names: assert self.mesh is not None return self.mesh[mesh_dim_names] else: assert self.mesh is not None return ManagedDeviceMesh( self.mesh[mesh_dim_names], mesh_dim_names, self.replicate_pg, mesh_dim_names.index(self.replicate_dim_name), parent=self, ) def _real_mesh_dim(self, mesh_dim: int) -> int: return mesh_dim - 1 if mesh_dim > self.replicate_dim else mesh_dim
[docs] def get_group(self, mesh_dim: Optional[Union[int, str]] = None) -> BaseProcessGroup: if isinstance(mesh_dim, str): dim = self.mesh_dim_names.index(mesh_dim) else: dim = 0 if mesh_dim is None else int(mesh_dim) if mesh_dim is None: return self.replicate_pg elif dim == self.replicate_dim: return self.replicate_pg else: assert self.mesh is not None return self.mesh.get_group(self._real_mesh_dim(dim))
def _flatten(self, mesh_dim_name: Optional[str]) -> "DeviceMesh": flatten_mesh = _FlattenDeviceMesh(self) if mesh_dim_name is None: raise ValueError("ManagedDeviceMesh._flatten requires `mesh_dim_name`") if self.parent is None: self.flatten_meshes[mesh_dim_name] = flatten_mesh else: self.parent.flatten_meshes[mesh_dim_name] = flatten_mesh return flatten_mesh
[docs] def size(self, mesh_dim: Optional[int] = None) -> int: if mesh_dim is None: if self.mesh is None: return self.replicate_pg.size() else: assert self.mesh is not None return self.mesh.size() * self.replicate_pg.size() elif mesh_dim == self.replicate_dim: return self.replicate_pg.size() else: assert self.mesh is not None return self.mesh.size(self._real_mesh_dim(mesh_dim))
@property def ndim(self) -> int: assert self.mesh is not None return self.mesh.ndim + 1 @property def shape(self) -> Tuple[int, ...]: assert self.mesh is not None ret: List[int] = list(self.mesh.shape) ret.insert(self.replicate_dim, self.replicate_pg.size()) return tuple(ret)
[docs] def get_rank(self) -> int: assert self.mesh is not None return self.mesh.get_rank()
[docs] def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int: if isinstance(mesh_dim, str): dim = self.mesh_dim_names.index(mesh_dim) else: dim = 0 if mesh_dim is None else int(mesh_dim) if mesh_dim is None: if self.mesh is None: return get_rank(self.replicate_pg) assert self.replicate_dim == 0, "replicate_dim must be the first one" assert self.mesh is not None other_dim_size = self.mesh.size() assert self.mesh is not None other_dim_rank = self.mesh.get_local_rank() replicate_pg_rank = get_rank(self.replicate_pg) return other_dim_size * replicate_pg_rank + other_dim_rank elif dim == self.replicate_dim: return get_rank(self.replicate_pg) else: assert self.mesh is not None return self.mesh.get_local_rank(self._real_mesh_dim(dim))
[docs] def get_coordinate(self) -> Optional[List[int]]: """ Return the relative indices of this rank relative to all dimensions of the mesh. If this rank is not part of the mesh, return None. """ assert self.mesh is not None return self.mesh._coordinate_on_dim if self.mesh._coordinate_on_dim else None
[docs] def get_all_groups(self) -> List[BaseProcessGroup]: raise NotImplementedError
class _FlattenDeviceMesh(DeviceMesh): def __init__(self, managed_mesh: ManagedDeviceMesh) -> None: self.managed_mesh = managed_mesh def __getitem__(self, mesh_dim_names: Union[str, Tuple[str, ...]]) -> DeviceMesh: raise NotImplementedError def get_group(self, mesh_dim: Optional[Union[int, str]] = None) -> BaseProcessGroup: raise NotImplementedError def _flatten(self, mesh_dim_name: Optional[str]) -> "DeviceMesh": raise NotImplementedError def size(self, mesh_dim: Optional[int] = None) -> int: assert mesh_dim is None return self.managed_mesh.size() @property def ndim(self) -> int: raise NotImplementedError @property def shape(self) -> Tuple[int, ...]: raise NotImplementedError def get_rank(self) -> int: raise NotImplementedError def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int: assert mesh_dim is None return self.managed_mesh.get_local_rank() def get_all_groups(self) -> List[BaseProcessGroup]: raise NotImplementedError
[docs]def ft_init_device_mesh( *, device_type: str, mesh_shape: Tuple[int, ...], mesh_dim_names: Tuple[str, ...], replicate_dim: int, manager: "Manager", ) -> "ManagedDeviceMesh": # We need to mislead DeviceMesh into thinking that replicate_dim has only # 1 rank. _mesh_shape = list(mesh_shape) _mesh_shape.pop(replicate_dim) _mesh_dim_names = list(mesh_dim_names) _mesh_dim_names.pop(replicate_dim) mesh = init_device_mesh( device_type, mesh_shape=tuple(_mesh_shape), mesh_dim_names=tuple(_mesh_dim_names), ) if device_type == "cpu": pg = ProcessGroupGloo() elif device_type == "cuda": pg = ProcessGroupNCCL() else: raise ValueError() manager._pg = pg replicate_pg = ManagedProcessGroup(manager) # We have to use MultiProcessTestCase, otherwise c10d will complain # the same backend has been registered. replicate_pg.register(mesh_dim_names[replicate_dim]) return ManagedDeviceMesh( mesh=mesh, mesh_dim_names=mesh_dim_names, replicate_pg=replicate_pg, replicate_dim=replicate_dim, parent=None, )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources