Source code for torchtext.datasets.sst2
# Copyright (c) Facebook, Inc. and its affiliates.
import os
from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_create_dataset_directory,
_wrap_split_argument,
)
if is_module_available("torchdata"):
from torchdata.datapipes.iter import IterableWrapper, FileOpener
# we import HttpReader from _download_hooks so we can swap out public URLs
# with interal URLs when the dataset is used within Facebook
from torchtext._download_hooks import HttpReader
URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"
MD5 = "9f81648d4199384278b86e315dac217c"
NUM_LINES = {
"train": 67349,
"dev": 872,
"test": 1821,
}
_PATH = "SST-2.zip"
DATASET_NAME = "SST2"
_EXTRACTED_FILES = {
"train": os.path.join("SST-2", "train.tsv"),
"dev": os.path.join("SST-2", "dev.tsv"),
"test": os.path.join("SST-2", "test.tsv"),
}
[docs]@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "dev", "test"))
def SST2(root, split):
"""SST2 Dataset
For additional details refer to https://nlp.stanford.edu/sentiment/
Number of lines per split:
- train: 67349
- dev: 872
- test: 1821
Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `dev`, `test`)
:returns: DataPipe that yields tuple of text and/or label (1 to 4). The `test` split only returns text.
:rtype: Union[(int, str), (str,)]
"""
# TODO Remove this after removing conditional dependency
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`"
)
url_dp = IterableWrapper([URL])
cache_compressed_dp = url_dp.on_disk_cache(
filepath_fn=lambda x: os.path.join(root, os.path.basename(x)),
hash_dict={os.path.join(root, os.path.basename(URL)): MD5},
hash_type="md5",
)
cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching(
mode="wb", same_filepath_fn=True
)
cache_decompressed_dp = cache_compressed_dp.on_disk_cache(
filepath_fn=lambda x: os.path.join(root, _EXTRACTED_FILES[split])
)
cache_decompressed_dp = (
FileOpener(cache_decompressed_dp, mode="b")
.read_from_zip()
.filter(lambda x: _EXTRACTED_FILES[split] in x[0])
)
cache_decompressed_dp = cache_decompressed_dp.end_caching(
mode="wb", same_filepath_fn=True
)
data_dp = FileOpener(cache_decompressed_dp, mode="b")
# test split for SST2 doesn't have labels
if split == "test":
parsed_data = data_dp.parse_csv(skip_lines=1, delimiter="\t").map(
lambda t: (t[1].strip(),)
)
else:
parsed_data = data_dp.parse_csv(skip_lines=1, delimiter="\t").map(
lambda t: (t[0].strip(), int(t[1]))
)
return parsed_data