• Docs >
  • torchtext.data.metrics
Shortcuts

torchtext.data.metrics

bleu_score

torchtext.data.metrics.bleu_score(candidate_corpus, references_corpus, max_n=4, weights=[0.25, 0.25, 0.25, 0.25])[source]

Computes the BLEU score between a candidate translation corpus and a references translation corpus. Based on https://www.aclweb.org/anthology/P02-1040.pdf

Parameters
  • candidate_corpus – an iterable of candidate translations. Each translation is an iterable of tokens

  • references_corpus – an iterable of iterables of reference translations. Each translation is an iterable of tokens

  • max_n – the maximum n-gram we want to use. E.g. if max_n=3, we will use unigrams, bigrams and trigrams

  • weights – a list of weights used for each n-gram category (uniform by default)

Examples

>>> from torchtext.data.metrics import bleu_score
>>> candidate_corpus = [['My', 'full', 'pytorch', 'test'], ['Another', 'Sentence']]
>>> references_corpus = [[['My', 'full', 'pytorch', 'test'], ['Completely', 'Different']], [['No', 'Match']]]
>>> bleu_score(candidate_corpus, references_corpus)
    0.8408964276313782

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources