Shortcuts

Source code for torchtext.datasets.conll2000chunking

import os
from typing import Union, Tuple

from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
    _wrap_split_argument,
    _create_dataset_directory,
)

if is_module_available("torchdata"):
    from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper


URL = {
    "train": "https://www.clips.uantwerpen.be/conll2000/chunking/train.txt.gz",
    "test": "https://www.clips.uantwerpen.be/conll2000/chunking/test.txt.gz",
}

MD5 = {
    "train": "6969c2903a1f19a83569db643e43dcc8",
    "test": "a916e1c2d83eb3004b38fc6fcd628939",
}

NUM_LINES = {
    "train": 8936,
    "test": 2012,
}

_EXTRACTED_FILES = {"train": "train.txt", "test": "test.txt"}

DATASET_NAME = "CoNLL2000Chunking"


[docs]@_create_dataset_directory(dataset_name=DATASET_NAME) @_wrap_split_argument(("train", "test")) def CoNLL2000Chunking(root: str, split: Union[Tuple[str], str]): """CoNLL2000Chunking Dataset For additional details refer to https://www.clips.uantwerpen.be/conll2000/chunking/ Number of lines per split: - train: 8936 - test: 2012 Args: root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `test`) :returns: DataPipe that yields list of words along with corresponding Parts-of-speech tag and chunk tag :rtype: [list(str), list(str), list(str)] """ if not is_module_available("torchdata"): raise ModuleNotFoundError( "Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`" ) url_dp = IterableWrapper([URL[split]]) # Cache and check HTTP response cache_compressed_dp = url_dp.on_disk_cache( filepath_fn=lambda x: os.path.join(root, os.path.basename(URL[split])), hash_dict={os.path.join(root, os.path.basename(URL[split])): MD5[split]}, hash_type="md5", ) cache_compressed_dp = HttpReader(cache_compressed_dp).end_caching( mode="wb", same_filepath_fn=True ) # Cache and check the gzip extraction for relevant split cache_decompressed_dp = cache_compressed_dp.on_disk_cache( filepath_fn=lambda x: os.path.join(root, _EXTRACTED_FILES[split]) ) cache_decompressed_dp = FileOpener(cache_decompressed_dp, mode="b").extract( file_type="gzip" ) cache_decompressed_dp = cache_decompressed_dp.end_caching( mode="wb", same_filepath_fn=True ) data_dp = FileOpener(cache_decompressed_dp, mode="b") return data_dp.readlines(decode=True).read_iob(sep=" ")

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources