Shortcuts

Source code for torchtext.datasets.amazonreviewfull

import os
from typing import Union, Tuple

from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
    _wrap_split_argument,
    _create_dataset_directory,
)

if is_module_available("torchdata"):
    from torchdata.datapipes.iter import FileOpener, GDriveReader, IterableWrapper


URL = "https://drive.google.com/uc?export=download&id=0Bz8a_Dbh9QhbZVhsUnRWRDhETzA"

MD5 = "57d28bd5d930e772930baddf36641c7c"

NUM_LINES = {
    "train": 3000000,
    "test": 650000,
}

_PATH = "amazon_review_full_csv.tar.gz"

_EXTRACTED_FILES = {
    "train": os.path.join("amazon_review_full_csv", "train.csv"),
    "test": os.path.join("amazon_review_full_csv", "test.csv"),
}

_EXTRACTED_FILES_MD5 = {
    "train": "31b268b09fd794e0ca5a1f59a0358677",
    "test": "0f1e78ab60f625f2a30eab6810ef987c",
}

DATASET_NAME = "AmazonReviewFull"


[docs]@_create_dataset_directory(dataset_name=DATASET_NAME) @_wrap_split_argument(("train", "test")) def AmazonReviewFull(root: str, split: Union[Tuple[str], str]): """AmazonReviewFull Dataset For additional details refer to https://arxiv.org/abs/1509.01626 Number of lines per split: - train: 3000000 - test: 650000 Args: root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache') split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `test`) :returns: DataPipe that yields tuple of label (1 to 5) and text containing the review title and text :rtype: (int, str) """ if not is_module_available("torchdata"): raise ModuleNotFoundError( "Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`" ) url_dp = IterableWrapper([URL]) cache_compressed_dp = url_dp.on_disk_cache( filepath_fn=lambda x: os.path.join(root, _PATH), hash_dict={os.path.join(root, _PATH): MD5}, hash_type="md5", ) cache_compressed_dp = GDriveReader(cache_compressed_dp).end_caching( mode="wb", same_filepath_fn=True ) cache_decompressed_dp = cache_compressed_dp.on_disk_cache( filepath_fn=lambda x: os.path.join(root, _EXTRACTED_FILES[split]) ) cache_decompressed_dp = ( FileOpener(cache_decompressed_dp, mode="b") .read_from_tar() .filter(lambda x: _EXTRACTED_FILES[split] in x[0]) ) cache_decompressed_dp = cache_decompressed_dp.end_caching( mode="wb", same_filepath_fn=True ) data_dp = FileOpener(cache_decompressed_dp, mode="b") return data_dp.parse_csv().map(fn=lambda t: (int(t[0]), " ".join(t[1:])))

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources