Source code for torchtext.data.functional
import re
import io
import torch
__all__ = [
"generate_sp_model", "load_sp_model",
"sentencepiece_numericalizer", "sentencepiece_tokenizer",
"numericalize_tokens_from_iterator",
"filter_wikipedia_xml",
"to_map_style_dataset",
]
"""
This file contains experimental functionality.
All of these are experimental, unstable, and subject to change or deletion.
"""
[docs]def generate_sp_model(filename, vocab_size=20000,
model_type="unigram",
model_prefix='m_user'):
r"""Train a SentencePiece tokenizer.
Args:
filename: the data file for training SentencePiece model.
vocab_size: the size of vocabulary (Default: 20,000).
model_type: the type of SentencePiece model, including unigram,
bpe, char, word.
model_prefix: the prefix of the files saving model and vocab.
Outputs:
The model and vocab are saved in two separate files with
model_prefix.
Examples:
>>> from torchtext.data.functional import generate_sp_model
>>> generate_sp_model('test.csv', vocab_size=23456, model_prefix='spm_user')
"""
torch.ops.torchtext.generate_sp_model(filename, vocab_size, model_type, model_prefix)
[docs]def load_sp_model(spm):
r"""Load a sentencepiece model for file.
Args:
spm: the file path or a file object saving the sentencepiece model.
Outputs:
output: a SentencePiece model.
Examples:
>>> from torchtext.data.functional import load_sp_model
>>> sp_model = load_sp_model("m_user.model")
>>> sp_model = load_sp_model(open("m_user.model", 'rb'))
"""
if isinstance(spm, str):
return torch.ops.torchtext.load_sp_model(spm)
elif isinstance(spm, io.BufferedReader):
return torch.ops.torchtext.load_sp_model_string(spm.read())
else:
raise TypeError(
f'Unsupported type for spm argument: {type(spm).__name__}. ' +
'Supported types are: ' +
', '.join([
'str', 'io.BufferedReader'
]))
[docs]def sentencepiece_numericalizer(sp_model):
r"""A sentencepiece model to numericalize a text sentence into
a generator over the ids.
Args:
sp_model: a SentencePiece model.
Outputs:
output: a generator with the input of text sentence and the output of the
corresponding ids based on SentencePiece model.
Examples:
>>> from torchtext.data.functional import sentencepiece_numericalizer
>>> sp_id_generator = sentencepiece_numericalizer(sp_model)
>>> list_a = ["sentencepiece encode as pieces", "examples to try!"]
>>> list(sp_id_generator(list_a))
[[9858, 9249, 1629, 1305, 1809, 53, 842],
[2347, 13, 9, 150, 37]]
"""
def _internal_func(txt_iter):
for line in txt_iter:
yield sp_model.EncodeAsIds(line)
return _internal_func
[docs]def sentencepiece_tokenizer(sp_model):
r"""A sentencepiece model to tokenize a text sentence into
a generator over the tokens.
Args:
sp_model: a SentencePiece model.
Outputs:
output: a generator with the input of text sentence and the output of the
corresponding tokens based on SentencePiece model.
Examples:
>>> from torchtext.data.functional import sentencepiece_tokenizer
>>> sp_tokens_generator = sentencepiece_tokenizer(sp_model)
>>> list_a = ["sentencepiece encode as pieces", "examples to try!"]
>>> list(sp_tokens_generator(list_a))
[['_sentence', 'piece', '_en', 'co', 'de', '_as', '_pieces'],
['_example', 's', '_to', '_try', '!']]
"""
def _internal_func(txt_iter):
for line in txt_iter:
yield sp_model.EncodeAsPieces(line)
return _internal_func
[docs]def custom_replace(replace_pattern):
r"""A transform to convert text string.
Examples:
>>> from torchtext.data.functional import custom_replace
>>> custom_replace_transform = custom_replace([(r'S', 's'), (r'\s+', ' ')])
>>> list_a = ["Sentencepiece encode aS pieces", "exampleS to try!"]
>>> list(custom_replace_transform(list_a))
['sentencepiece encode as pieces', 'examples to try!']
"""
_patterns = list((re.compile(p), r)
for (p, r) in replace_pattern)
def _internal_func(txt_iter):
for line in txt_iter:
for pattern_re, replaced_str in _patterns:
line = pattern_re.sub(replaced_str, line)
yield line
return _internal_func
[docs]def simple_space_split(iterator):
r"""A transform to split text string by spaces.
Examples:
>>> from torchtext.data.functional import simple_space_split
>>> list_a = ["Sentencepiece encode as pieces", "example to try!"]
>>> list(simple_space_split(list_a))
[['Sentencepiece', 'encode', 'as', 'pieces'], ['example', 'to', 'try!']]
"""
for line in iterator:
yield line.split()
[docs]def numericalize_tokens_from_iterator(vocab, iterator, removed_tokens=None):
r"""Yield a list of ids from an token iterator with a vocab.
Args:
vocab: the vocabulary convert token into id.
iterator: the iterator yield a list of tokens.
removed_tokens: removed tokens from output dataset (Default: None)
Examples:
>>> from torchtext.data.functional import simple_space_split
>>> from torchtext.data.functional import numericalize_tokens_from_iterator
>>> vocab = {'Sentencepiece' : 0, 'encode' : 1, 'as' : 2, 'pieces' : 3}
>>> ids_iter = numericalize_tokens_from_iterator(vocab,
>>> simple_space_split(["Sentencepiece as pieces",
>>> "as pieces"]))
>>> for ids in ids_iter:
>>> print([num for num in ids])
>>> [0, 2, 3]
>>> [2, 3]
"""
for tokens in iterator:
if removed_tokens is None:
yield iter(vocab[token] for token in tokens)
else:
yield iter(map(lambda x: vocab[x],
filter(lambda x: x not in removed_tokens, tokens)))
_patterns = [(r'<.*>', ''),
(r'&', '&'),
(r'<', '<'),
(r'>', '>'),
(r'<ref[^<]*<\/ref>', ''),
(r'<[^>]*>', ''),
(r'\[http:[^] ]*', '['),
(r'\|thumb', ''),
(r'\|left', ''),
(r'\|right', ''),
(r'\|\d+px', ''),
(r'\[\[image:[^\[\]]*\|', ''),
(r'\[\[category:([^|\]]*)[^]]*\]\]', '[[$1]]'),
(r'\[\[[a-z\-]*:[^\]]*\]\]', ''),
(r'\[\[[^\|\]]*\|', '[['),
(r'\{\{[^\}]*\}\}', ''),
(r'\{[^\}]*\}', ''),
(r'\[', ''),
(r'\]', ''),
(r'&[^;]*;', ' '),
(r'A', 'a'), (r'B', 'b'), (r'C', 'c'),
(r'D', 'd'), (r'E', 'e'), (r'F', 'f'),
(r'G', 'g'), (r'H', 'h'), (r'I', 'i'),
(r'J', 'j'), (r'K', 'k'), (r'L', 'l'),
(r'M', 'm'), (r'N', 'n'), (r'O', 'o'),
(r'P', 'p'), (r'Q', 'q'), (r'R', 'r'),
(r'S', 's'), (r'T', 't'), (r'U', 'u'),
(r'V', 'v'), (r'W', 'w'), (r'X', 'x'),
(r'Y', 'y'), (r'Z', 'z'),
(r'0', ' zero '), (r'1', ' one '), (r'2', ' two '),
(r'3', ' three '), (r'4', ' four '), (r'5', ' five '),
(r'6', ' six '), (r'7', ' seven '), (r'8', ' eight '),
(r'9', ' nine '),
(r'[^a-z\n]+', ' '),
(r'\n ', ''),
(r'\s+', ' '),
(r'\n\s*\n', r'\n')
]
[docs]def filter_wikipedia_xml(text_iterator):
r"""Filter wikipedia xml lines according to https://github.com/facebookresearch/fastText/blob/master/wikifil.pl
args:
text_iterator: An iterator type object that yields strings. Examples include string list, text io, generators etc.
Examples:
>>> from torchtext.data.functional import filter_wikipedia_xml
>>> from torchtext.datasets import EnWik9
>>> data_iter = EnWik9(split='train')
>>> filter_data_iter = filter_wikipedia_xml(data_iter)
>>> file_name = '.data/EnWik9/enwik9'
>>> filter_data_iter = filter_wikipedia_xml(open(file_name,'r'))
"""
try:
iter(text_iterator)
except:
raise TypeError("Input {} must support iterator semantics".format(text_iterator))
norm_transform = custom_replace(_patterns)
for line in text_iterator:
if '#redirect' in line or '#REDIRECT' in line:
continue
line = list(norm_transform([line]))[0].strip()
if line:
yield line
[docs]def to_map_style_dataset(iter_data):
r"""Convert iterable-style dataset to map-style dataset.
args:
iter_data: An iterator type object. Examples include Iterable datasets, string list, text io, generators etc.
Examples:
>>> from torchtext.datasets import IMDB
>>> from torchtext.data import to_map_style_dataset
>>> train_iter = IMDB(split='train')
>>> train_dataset = to_map_style_dataset(train_iter)
>>> file_name = '.data/EnWik9/enwik9'
>>> data_iter = to_map_style_dataset(open(file_name,'r'))
"""
# Inner class to convert iterable-style to map-style dataset
class _MapStyleDataset(torch.utils.data.Dataset):
def __init__(self, iter_data):
# TODO Avoid list issue #1296
self._data = list(iter_data)
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
return self._data[idx]
return _MapStyleDataset(iter_data)