ProbabilisticActor¶
- class torchrl.modules.tensordict_module.ProbabilisticActor(*args, **kwargs)[source]¶
General class for probabilistic actors in RL.
The Actor class comes with default values for the out_keys ([“action”]) and if the spec is provided but not as a CompositeSpec object, it will be automatically translated into
spec = CompositeSpec(action=spec)
- Parameters:
module (nn.Module) – a
torch.nn.Module
used to map the input to the output parameter space.in_keys (str or iterable of str or dict) – key(s) that will be read from the input TensorDict and used to build the distribution. Importantly, if it’s an iterable of string or a string, those keys must match the keywords used by the distribution class of interest, e.g.
"loc"
and"scale"
for the Normal distribution and similar. If in_keys is a dictionary,, the keys are the keys of the distribution and the values are the keys in the tensordict that will get match to the corresponding distribution keys.out_keys (str or iterable of str) – keys where the sampled values will be written. Importantly, if these keys are found in the input TensorDict, the sampling step will be skipped.
spec (TensorSpec, optional) – keyword-only argument containing the specs of the output tensor. If the module outputs multiple output tensors, spec characterize the space of the first output tensor.
safe (bool) – keyword-only argument. if
True
, the value of the output is checked against the input spec. Out-of-domain sampling can occur because of exploration policies or numerical under/overflow issues. If this value is out of bounds, it is projected back onto the desired space using theTensorSpec.project
method. Default isFalse
.default_interaction_type (str, optional) –
keyword-only argument. Default method to be used to retrieve the output value. Should be one of: ‘InteractionType.MODE’, ‘InteractionType.DETERMINISTIC’, ‘InteractionType.MEDIAN’, ‘InteractionType.MEAN’ or ‘InteractionType.RANDOM’ (in which case the value is sampled randomly from the distribution). TorchRL’s
ExplorationType
class is a proxy toInteractionType
. Defaults to is ‘InteractionType.DETERMINISTIC’.Note
When a sample is drawn, the
ProbabilisticActor
instance will first look for the interaction mode dictated by theinteraction_type()
global function. If this returns None (its default value), then the default_interaction_type of the ProbabilisticTDModule instance will be used. Note thatDataCollectorBase
instances will use set_interaction_type totensordict.nn.InteractionType.RANDOM
by default.distribution_class (Type, optional) –
keyword-only argument. A
torch.distributions.Distribution
class to be used for sampling. Default istensordict.nn.distributions.Delta
.Note
if
distribution_class
is of typeCompositeDistribution
, the keys will be inferred from thedistribution_map
/name_map
keyword arguments of that distribution. If this distribution is used with another constructor (e.g., partial or lambda function) then the out_keys will need to be provided explicitly. Note also that actions will __not__ be prefixed with an"action"
key, see the example below on how this can be achieved with aProbabilisticActor
.distribution_kwargs (dict, optional) – keyword-only argument. Keyword-argument pairs to be passed to the distribution.
return_log_prob (bool, optional) – keyword-only argument. If
True
, the log-probability of the distribution sample will be written in the tensordict with the key ‘sample_log_prob’. Default isFalse
.cache_dist (bool, optional) – keyword-only argument. EXPERIMENTAL: if
True
, the parameters of the distribution (i.e. the output of the module) will be written to the tensordict along with the sample. Those parameters can be used to re-compute the original distribution later on (e.g. to compute the divergence between the distribution used to sample the action and the updated distribution in PPO). Default isFalse
.n_empirical_estimate (int, optional) – keyword-only argument. Number of samples to compute the empirical mean when it is not available. Defaults to 1000.
Examples
>>> import torch >>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> from torchrl.data import BoundedTensorSpec >>> from torchrl.modules import ProbabilisticActor, NormalParamExtractor, TanhNormal >>> td = TensorDict({"observation": torch.randn(3, 4)}, [3,]) >>> action_spec = BoundedTensorSpec(shape=torch.Size([4]), ... low=-1, high=1) >>> module = nn.Sequential(torch.nn.Linear(4, 8), NormalParamExtractor()) >>> tensordict_module = TensorDictModule(module, in_keys=["observation"], out_keys=["loc", "scale"]) >>> td_module = ProbabilisticActor( ... module=tensordict_module, ... spec=action_spec, ... in_keys=["loc", "scale"], ... distribution_class=TanhNormal, ... ) >>> td = td_module(td) >>> td TensorDict( fields={ action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)
Probabilistic actors also support compound actions through the
tensordict.nn.CompositeDistribution
class. This distribution takes a tensordict as input (typically “params”) and reads it as a whole: the content of this tensordict is the input to the distributions contained in the compound one.Examples
>>> from tensordict import TensorDict >>> from tensordict.nn import CompositeDistribution, TensorDictModule >>> from torchrl.modules import ProbabilisticActor >>> from torch import nn, distributions as d >>> import torch >>> >>> class Module(nn.Module): ... def forward(self, x): ... return x[..., :3], x[..., 3:6], x[..., 6:] >>> module = TensorDictModule(Module(), ... in_keys=["x"], ... out_keys=[("params", "normal", "loc"), ... ("params", "normal", "scale"), ... ("params", "categ", "logits")]) >>> actor = ProbabilisticActor(module, ... in_keys=["params"], ... distribution_class=CompositeDistribution, ... distribution_kwargs={"distribution_map": { ... "normal": d.Normal, "categ": d.Categorical}} ... ) >>> data = TensorDict({"x": torch.rand(10)}, []) >>> actor(data) TensorDict( fields={ categ: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False), normal: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), params: TensorDict( fields={ categ: TensorDict( fields={ logits: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), normal: TensorDict( fields={ loc: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), scale: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), x: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
Using a probabilistic actor with a composite distribution can be achieved using the following example code:
Examples
>>> import torch >>> from tensordict import TensorDict >>> from tensordict.nn import CompositeDistribution >>> from tensordict.nn import TensorDictModule >>> from torch import distributions as d >>> from torch import nn >>> >>> from torchrl.modules import ProbabilisticActor >>> >>> >>> class Module(nn.Module): ... def forward(self, x): ... return x[..., :3], x[..., 3:6], x[..., 6:] ... >>> >>> module = TensorDictModule(Module(), ... in_keys=["x"], ... out_keys=[ ... ("params", "normal", "loc"), ("params", "normal", "scale"), ("params", "categ", "logits") ... ]) >>> actor = ProbabilisticActor(module, ... in_keys=["params"], ... distribution_class=CompositeDistribution, ... distribution_kwargs={"distribution_map": {"normal": d.Normal, "categ": d.Categorical}, ... "name_map": {"normal": ("action", "normal"), ... "categ": ("action", "categ")}} ... ) >>> print(actor.out_keys) [('params', 'normal', 'loc'), ('params', 'normal', 'scale'), ('params', 'categ', 'logits'), ('action', 'normal'), ('action', 'categ')] >>> >>> data = TensorDict({"x": torch.rand(10)}, []) >>> module(data) >>> print(actor(data)) TensorDict( fields={ action: TensorDict( fields={ categ: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int64, is_shared=False), normal: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), params: TensorDict( fields={ categ: TensorDict( fields={ logits: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), normal: TensorDict( fields={ loc: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), scale: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False), x: Tensor(shape=torch.Size([10]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)