Source code for torchrl.objectives.redq
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import math
from dataclasses import dataclass
from numbers import Number
from typing import List, Union
import torch
from tensordict import TensorDict, TensorDictBase, TensorDictParams
from tensordict.nn import dispatch, TensorDictModule, TensorDictSequential
from tensordict.utils import NestedKey
from torch import Tensor
from torchrl.data.tensor_specs import CompositeSpec
from torchrl.envs.utils import ExplorationType, set_exploration_type, step_mdp
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
_cache_values,
_GAMMA_LMBDA_DEPREC_ERROR,
_reduce,
_vmap_func,
default_value_kwargs,
distance_loss,
ValueEstimators,
)
from torchrl.objectives.value import TD0Estimator, TD1Estimator, TDLambdaEstimator
[docs]class REDQLoss(LossModule):
"""REDQ Loss module.
REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL
https://openreview.net/pdf?id=AY8zfZm0tDd) generalizes the idea of using an ensemble of Q-value functions to
train a SAC-like algorithm.
Args:
actor_network (TensorDictModule): the actor to be trained
qvalue_network (TensorDictModule): a single Q-value network or a list of Q-value networks.
If a single instance of `qvalue_network` is provided, it will be duplicated ``num_qvalue_nets``
times. If a list of modules is passed, their
parameters will be stacked unless they share the same identity (in which case
the original parameter will be expanded).
.. warning:: When a list of parameters if passed, it will __not__ be compared against the policy parameters
and all the parameters will be considered as untied.
Keyword Args:
num_qvalue_nets (int, optional): Number of Q-value networks to be trained.
Default is ``10``.
sub_sample_len (int, optional): number of Q-value networks to be
subsampled to evaluate the next state value
Default is ``2``.
loss_function (str, optional): loss function to be used for the Q-value.
Can be one of ``"smooth_l1"``, ``"l2"``,
``"l1"``, Default is ``"smooth_l1"``.
alpha_init (float, optional): initial entropy multiplier.
Default is ``1.0``.
min_alpha (float, optional): min value of alpha.
Default is ``0.1``.
max_alpha (float, optional): max value of alpha.
Default is ``10.0``.
action_spec (TensorSpec, optional): the action tensor spec. If not provided
and the target entropy is ``"auto"``, it will be retrieved from
the actor.
fixed_alpha (bool, optional): whether alpha should be trained to match
a target entropy. Default is ``False``.
target_entropy (Union[str, Number], optional): Target entropy for the
stochastic policy. Default is "auto".
delay_qvalue (bool, optional): Whether to separate the target Q value
networks from the Q value networks used
for data collection. Default is ``False``.
gSDE (bool, optional): Knowing if gSDE is used is necessary to create
random noise variables.
Default is ``False``.
priority_key (str, optional): [Deprecated, use .set_keys() instead] Key where to write the priority value
for prioritized replay buffers. Default is
``"td_error"``.
separate_losses (bool, optional): if ``True``, shared parameters between
policy and critic will only be trained on the policy loss.
Defaults to ``False``, i.e., gradients are propagated to shared
parameters for both policy and critic losses.
reduction (str, optional): Specifies the reduction to apply to the output:
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import BoundedTensorSpec
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.redq import REDQLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = BoundedTensorSpec(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
... module=module,
... in_keys=["loc", "scale"],
... spec=spec,
... distribution_class=TanhNormal)
>>> class ValueClass(nn.Module):
... def __init__(self):
... super().__init__()
... self.linear = nn.Linear(n_obs + n_act, 1)
... def forward(self, obs, act):
... return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
... module=module,
... in_keys=['observation', 'action'])
>>> loss = REDQLoss(actor, qvalue)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
... "observation": torch.randn(*batch, n_obs),
... "action": action,
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "reward"): torch.randn(*batch, 1),
... ("next", "observation"): torch.randn(*batch, n_obs),
... }, batch)
>>> loss(data)
TensorDict(
fields={
action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
This class is compatible with non-tensordict based modules too and can be
used without recurring to any tensordict-related primitive. In this case,
the expected keyword arguments are:
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and qvalue network
The return value is a tuple of tensors in the following order:
``["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]``.
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import BoundedTensorSpec
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.redq import REDQLoss
>>> n_act, n_obs = 4, 3
>>> spec = BoundedTensorSpec(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
... module=module,
... in_keys=["loc", "scale"],
... spec=spec,
... distribution_class=TanhNormal)
>>> class ValueClass(nn.Module):
... def __init__(self):
... super().__init__()
... self.linear = nn.Linear(n_obs + n_act, 1)
... def forward(self, obs, act):
... return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
... module=module,
... in_keys=['observation', 'action'])
>>> loss = REDQLoss(actor, qvalue)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> # filter output keys to "loss_actor", and "loss_qvalue"
>>> _ = loss.select_out_keys("loss_actor", "loss_qvalue")
>>> loss_actor, loss_qvalue = loss(
... observation=torch.randn(*batch, n_obs),
... action=action,
... next_done=torch.zeros(*batch, 1, dtype=torch.bool),
... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
... next_reward=torch.randn(*batch, 1),
... next_observation=torch.randn(*batch, n_obs))
>>> loss_actor.backward()
"""
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values
Attributes:
value (NestedKey): The input tensordict key where the state value is expected.
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
action (NestedKey): The input tensordict key where the action is expected. Defaults to ``"action"``.
sample_log_prob (NestedKey): The input tensordict key where the
sample log probability is expected. Defaults to ``"sample_log_prob"``.
priority (NestedKey): The input tensordict key where the target
priority is written to. Defaults to ``"td_error"``.
state_action_value (NestedKey): The input tensordict key where the
state action value is expected. Defaults to ``"state_action_value"``.
reward (NestedKey): The input tensordict key where the reward is expected.
Will be used for the underlying value estimator. Defaults to ``"reward"``.
done (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is done. Will be used for the underlying value estimator.
Defaults to ``"done"``.
terminated (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is terminated. Will be used for the underlying value estimator.
Defaults to ``"terminated"``.
"""
action: NestedKey = "action"
value: NestedKey = "state_value"
sample_log_prob: NestedKey = "sample_log_prob"
priority: NestedKey = "td_error"
state_action_value: NestedKey = "state_action_value"
reward: NestedKey = "reward"
done: NestedKey = "done"
terminated: NestedKey = "terminated"
default_keys = _AcceptedKeys()
delay_actor: bool = False
default_value_estimator = ValueEstimators.TD0
out_keys = [
"loss_actor",
"loss_qvalue",
"loss_alpha",
"alpha",
"entropy",
"state_action_value_actor",
"action_log_prob_actor",
"next.state_value",
"target_value",
]
actor_network: TensorDictModule
qvalue_network: TensorDictModule
actor_network_params: TensorDictParams
qvalue_network_params: TensorDictParams
target_actor_network_params: TensorDictParams
target_qvalue_network_params: TensorDictParams
def __init__(
self,
actor_network: TensorDictModule,
qvalue_network: TensorDictModule | List[TensorDictModule],
*,
num_qvalue_nets: int = 10,
sub_sample_len: int = 2,
loss_function: str = "smooth_l1",
alpha_init: float = 1.0,
min_alpha: float = 0.1,
max_alpha: float = 10.0,
action_spec=None,
fixed_alpha: bool = False,
target_entropy: Union[str, Number] = "auto",
delay_qvalue: bool = True,
gSDE: bool = False,
gamma: float = None,
priority_key: str = None,
separate_losses: bool = False,
reduction: str = None,
):
if reduction is None:
reduction = "mean"
super().__init__()
self._in_keys = None
self._set_deprecated_ctor_keys(priority_key=priority_key)
self.convert_to_functional(
actor_network,
"actor_network",
create_target_params=self.delay_actor,
)
# let's make sure that actor_network has `return_log_prob` set to True
self.actor_network.return_log_prob = True
if separate_losses:
# we want to make sure there are no duplicates in the params: the
# params of critic must be refs to actor if they're shared
policy_params = list(actor_network.parameters())
else:
policy_params = None
self.delay_qvalue = delay_qvalue
self.convert_to_functional(
qvalue_network,
"qvalue_network",
num_qvalue_nets,
create_target_params=self.delay_qvalue,
compare_against=policy_params,
)
self.num_qvalue_nets = num_qvalue_nets
self.sub_sample_len = max(1, min(sub_sample_len, num_qvalue_nets - 1))
self.loss_function = loss_function
try:
device = next(self.parameters()).device
except AttributeError:
device = torch.device("cpu")
self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device))
self.register_buffer(
"min_log_alpha", torch.tensor(min_alpha, device=device).log()
)
self.register_buffer(
"max_log_alpha", torch.tensor(max_alpha, device=device).log()
)
self.fixed_alpha = fixed_alpha
if fixed_alpha:
self.register_buffer(
"log_alpha", torch.tensor(math.log(alpha_init), device=device)
)
else:
self.register_parameter(
"log_alpha",
torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)),
)
self._target_entropy = target_entropy
self._action_spec = action_spec
self.target_entropy_buffer = None
self.reduction = reduction
self.gSDE = gSDE
if gamma is not None:
raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
self._make_vmap()
def _make_vmap(self):
self._vmap_qvalue_network00 = _vmap_func(
self.qvalue_network, randomness=self.vmap_randomness
)
self._vmap_getdist = _vmap_func(
self.actor_network, func="get_dist_params", randomness=self.vmap_randomness
)
@property
def target_entropy(self):
target_entropy = self.target_entropy_buffer
if target_entropy is None:
delattr(self, "target_entropy_buffer")
target_entropy = self._target_entropy
action_spec = self._action_spec
actor_network = self.actor_network
device = next(self.parameters()).device
if target_entropy == "auto":
action_spec = (
action_spec
if action_spec is not None
else getattr(actor_network, "spec", None)
)
if action_spec is None:
raise RuntimeError(
"Cannot infer the dimensionality of the action. Consider providing "
"the target entropy explicitely or provide the spec of the "
"action tensor in the actor network."
)
if not isinstance(action_spec, CompositeSpec):
action_spec = CompositeSpec({self.tensor_keys.action: action_spec})
if (
isinstance(self.tensor_keys.action, tuple)
and len(self.tensor_keys.action) > 1
):
action_container_shape = action_spec[
self.tensor_keys.action[:-1]
].shape
else:
action_container_shape = action_spec.shape
target_entropy = -float(
action_spec[self.tensor_keys.action]
.shape[len(action_container_shape) :]
.numel()
)
self.register_buffer(
"target_entropy_buffer", torch.tensor(target_entropy, device=device)
)
return self.target_entropy_buffer
return target_entropy
def _forward_value_estimator_keys(self, **kwargs) -> None:
if self._value_estimator is not None:
self._value_estimator.set_keys(
value=self._tensor_keys.value,
reward=self.tensor_keys.reward,
done=self.tensor_keys.done,
terminated=self.tensor_keys.terminated,
)
self._set_in_keys()
@property
def alpha(self):
self.log_alpha.data.clamp_(self.min_log_alpha, self.max_log_alpha)
with torch.no_grad():
alpha = self.log_alpha.exp()
return alpha
def _set_in_keys(self):
keys = [
self.tensor_keys.action,
self.tensor_keys.sample_log_prob,
("next", self.tensor_keys.reward),
("next", self.tensor_keys.done),
("next", self.tensor_keys.terminated),
*self.actor_network.in_keys,
*[("next", key) for key in self.actor_network.in_keys],
*self.qvalue_network.in_keys,
]
self._in_keys = list(set(keys))
@property
def in_keys(self):
if self._in_keys is None:
self._set_in_keys()
return self._in_keys
@in_keys.setter
def in_keys(self, values):
self._in_keys = values
@property
@_cache_values
def _cached_detach_qvalue_network_params(self):
return self.qvalue_network_params.detach()
def _qvalue_params_cat(self, selected_q_params):
qvalue_params = torch.cat(
[
self._cached_detach_qvalue_network_params,
selected_q_params,
self.qvalue_network_params,
],
0,
)
return qvalue_params
[docs] @dispatch
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
obs_keys = self.actor_network.in_keys
tensordict_select = tensordict.clone(False).select(
"next", *obs_keys, self.tensor_keys.action, strict=False
)
selected_models_idx = torch.randperm(self.num_qvalue_nets)[
: self.sub_sample_len
].sort()[0]
selected_q_params = self.target_qvalue_network_params[selected_models_idx]
actor_params = torch.stack(
[self.actor_network_params, self.target_actor_network_params], 0
)
tensordict_actor_grad = tensordict_select.select(
*obs_keys, strict=False
) # to avoid overwriting keys
next_td_actor = step_mdp(tensordict_select).select(
*self.actor_network.in_keys, strict=False
) # next_observation ->
tensordict_actor = torch.stack([tensordict_actor_grad, next_td_actor], 0)
# tensordict_actor = tensordict_actor.contiguous()
with set_exploration_type(ExplorationType.RANDOM):
if self.gSDE:
tensordict_actor.set(
"_eps_gSDE",
torch.zeros(tensordict_actor.shape, device=tensordict_actor.device),
)
# vmap doesn't support sampling, so we take it out from the vmap
td_params = self._vmap_getdist(
tensordict_actor,
actor_params,
)
if isinstance(self.actor_network, TensorDictSequential):
sample_key = self.tensor_keys.action
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
else:
sample_key = self.tensor_keys.action
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
tensordict_actor.set(sample_key, tensordict_actor_dist.rsample())
tensordict_actor.set(
self.tensor_keys.sample_log_prob,
tensordict_actor_dist.log_prob(tensordict_actor.get(sample_key)),
)
# repeat tensordict_actor to match the qvalue size
_actor_loss_td = (
tensordict_actor[0]
.select(*self.qvalue_network.in_keys)
.expand(self.num_qvalue_nets, *tensordict_actor[0].batch_size)
) # for actor loss
_qval_td = tensordict_select.select(*self.qvalue_network.in_keys).expand(
self.num_qvalue_nets,
*tensordict_select.select(*self.qvalue_network.in_keys).batch_size,
) # for qvalue loss
_next_val_td = (
tensordict_actor[1]
.select(*self.qvalue_network.in_keys)
.expand(self.sub_sample_len, *tensordict_actor[1].batch_size)
) # for next value estimation
tensordict_qval = torch.cat(
[
_actor_loss_td,
_next_val_td,
_qval_td,
],
0,
)
# cat params
tensordict_qval = self._vmap_qvalue_network00(
tensordict_qval,
self._qvalue_params_cat(selected_q_params),
)
state_action_value = tensordict_qval.get(
self.tensor_keys.state_action_value
).squeeze(-1)
(
state_action_value_actor,
next_state_action_value_qvalue,
state_action_value_qvalue,
) = state_action_value.split(
[self.num_qvalue_nets, self.sub_sample_len, self.num_qvalue_nets],
dim=0,
)
sample_log_prob = tensordict_actor.get(
self.tensor_keys.sample_log_prob
).squeeze(-1)
(
action_log_prob_actor,
next_action_log_prob_qvalue,
) = sample_log_prob.unbind(0)
loss_actor = -(state_action_value_actor - self.alpha * action_log_prob_actor)
next_state_value = (
next_state_action_value_qvalue - self.alpha * next_action_log_prob_qvalue
)
next_state_value = next_state_value.min(0)[0]
tensordict_select.set(
("next", self.tensor_keys.value), next_state_value.unsqueeze(-1)
)
target_value = self.value_estimator.value_estimate(tensordict_select).squeeze(
-1
)
pred_val = state_action_value_qvalue
td_error = (pred_val - target_value).pow(2)
loss_qval = distance_loss(
pred_val,
target_value.expand_as(pred_val),
loss_function=self.loss_function,
)
tensordict.set(self.tensor_keys.priority, td_error.detach().max(0)[0])
loss_alpha = self._loss_alpha(sample_log_prob)
if not loss_qval.shape == loss_actor.shape:
raise RuntimeError(
f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}"
)
td_out = TensorDict(
{
"loss_actor": loss_actor,
"loss_qvalue": loss_qval,
"loss_alpha": loss_alpha,
"alpha": self.alpha.detach(),
"entropy": -sample_log_prob.detach().mean(),
"state_action_value_actor": state_action_value_actor.detach(),
"action_log_prob_actor": action_log_prob_actor.detach(),
"next.state_value": next_state_value.detach(),
"target_value": target_value.detach(),
},
[],
)
td_out = td_out.named_apply(
lambda name, value: _reduce(value, reduction=self.reduction)
if name.startswith("loss_")
else value,
batch_size=[],
)
return td_out
def _loss_alpha(self, log_pi: Tensor) -> Tensor:
if torch.is_grad_enabled() and not log_pi.requires_grad:
raise RuntimeError(
"expected log_pi to require gradient for the alpha loss)"
)
if self.target_entropy is not None:
# we can compute this loss even if log_alpha is not a parameter
alpha_loss = -self.log_alpha.exp() * (log_pi.detach() + self.target_entropy)
else:
# placeholder
alpha_loss = torch.zeros_like(log_pi)
return alpha_loss
[docs] def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
if value_type is None:
value_type = self.default_value_estimator
self.value_type = value_type
hp = dict(default_value_kwargs(value_type))
if hasattr(self, "gamma"):
hp["gamma"] = self.gamma
hp.update(hyperparams)
# we do not need a value network bc the next state value is already passed
if value_type == ValueEstimators.TD1:
self._value_estimator = TD1Estimator(value_network=None, **hp)
elif value_type == ValueEstimators.TD0:
self._value_estimator = TD0Estimator(value_network=None, **hp)
elif value_type == ValueEstimators.GAE:
raise NotImplementedError(
f"Value type {value_type} it not implemented for loss {type(self)}."
)
elif value_type == ValueEstimators.TDLambda:
self._value_estimator = TDLambdaEstimator(value_network=None, **hp)
else:
raise NotImplementedError(f"Unknown value type {value_type}")
tensor_keys = {
"value": self.tensor_keys.value,
"reward": self.tensor_keys.reward,
"done": self.tensor_keys.done,
"terminated": self.tensor_keys.terminated,
}
self._value_estimator.set_keys(**tensor_keys)