Shortcuts

QValueActor

class torchrl.modules.tensordict_module.QValueActor(*args, **kwargs)[source]

A Q-Value actor class.

This class appends a QValueModule after the input module such that the action values are used to select an action.

Parameters:

module (nn.Module) – a torch.nn.Module used to map the input to the output parameter space. If the class provided is not compatible with tensordict.nn.TensorDictModuleBase, it will be wrapped in a tensordict.nn.TensorDictModule with in_keys indicated by the following keyword argument.

Keyword Arguments:
  • in_keys (iterable of str, optional) – If the class provided is not compatible with tensordict.nn.TensorDictModuleBase, this list of keys indicates what observations need to be passed to the wrapped module to get the action values. Defaults to ["observation"].

  • spec (TensorSpec, optional) – Keyword-only argument. Specs of the output tensor. If the module outputs multiple output tensors, spec characterize the space of the first output tensor.

  • safe (bool) – Keyword-only argument. If True, the value of the output is checked against the input spec. Out-of-domain sampling can occur because of exploration policies or numerical under/overflow issues. If this value is out of bounds, it is projected back onto the desired space using the TensorSpec.project method. Default is False.

  • action_space (str, optional) – Action space. Must be one of "one-hot", "mult-one-hot", "binary" or "categorical". This argument is exclusive with spec, since spec conditions the action_space.

  • action_value_key (str or tuple of str, optional) – if the input module is a tensordict.nn.TensorDictModuleBase instance, it must match one of its output keys. Otherwise, this string represents the name of the action-value entry in the output tensordict.

  • action_mask_key (str or tuple of str, optional) – The input key representing the action mask. Defaults to "None" (equivalent to no masking).

Note

out_keys cannot be passed. If the module is a tensordict.nn.TensorDictModule instance, the out_keys will be updated accordingly. For regular torch.nn.Module instance, the triplet ["action", action_value_key, "chosen_action_value"] will be used.

Examples

>>> import torch
>>> from tensordict import TensorDict
>>> from torch import nn
>>> from torchrl.data import OneHotDiscreteTensorSpec
>>> from torchrl.modules.tensordict_module.actors import QValueActor
>>> td = TensorDict({'observation': torch.randn(5, 4)}, [5])
>>> # with a regular nn.Module
>>> module = nn.Linear(4, 4)
>>> action_spec = OneHotDiscreteTensorSpec(4)
>>> qvalue_actor = QValueActor(module=module, spec=action_spec)
>>> td = qvalue_actor(td)
>>> print(td)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([5, 4]), device=cpu, dtype=torch.int64, is_shared=False),
        action_value: Tensor(shape=torch.Size([5, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        chosen_action_value: Tensor(shape=torch.Size([5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        observation: Tensor(shape=torch.Size([5, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([5]),
    device=None,
    is_shared=False)
>>> # with a TensorDictModule
>>> td = TensorDict({'obs': torch.randn(5, 4)}, [5])
>>> module = TensorDictModule(lambda x: x, in_keys=["obs"], out_keys=["action_value"])
>>> action_spec = OneHotDiscreteTensorSpec(4)
>>> qvalue_actor = QValueActor(module=module, spec=action_spec)
>>> td = qvalue_actor(td)
>>> print(td)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([5, 4]), device=cpu, dtype=torch.int64, is_shared=False),
        action_value: Tensor(shape=torch.Size([5, 4]), device=cpu, dtype=torch.float32, is_shared=False),
        chosen_action_value: Tensor(shape=torch.Size([5, 1]), device=cpu, dtype=torch.float32, is_shared=False),
        obs: Tensor(shape=torch.Size([5, 4]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([5]),
    device=None,
    is_shared=False)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources