ActorCriticOperator¶
- class torchrl.modules.tensordict_module.ActorCriticOperator(*args, **kwargs)[source]¶
Actor-critic operator.
This class wraps together an actor and a value model that share a common observation embedding network:
Note
For a similar class that returns an action and a state-value \(V(s)\) see
ActorValueOperator
.To facilitate the workflow, this class comes with a get_policy_operator() method, which will both return a standalone TDModule with the dedicated functionality. The get_critic_operator will return the parent object, as the value is computed based on the policy output.
- Parameters:
common_operator (TensorDictModule) – a common operator that reads observations and produces a hidden variable
policy_operator (TensorDictModule) – a policy operator that reads the hidden variable and returns an action
value_operator (TensorDictModule) – a value operator, that reads the hidden variable and returns a value
Examples
>>> import torch >>> from tensordict import TensorDict >>> from torchrl.modules import ProbabilisticActor >>> from torchrl.modules import ValueOperator, TanhNormal, ActorCriticOperator, NormalParamWrapper, MLP >>> module_hidden = torch.nn.Linear(4, 4) >>> td_module_hidden = SafeModule( ... module=module_hidden, ... in_keys=["observation"], ... out_keys=["hidden"], ... ) >>> module_action = NormalParamWrapper(torch.nn.Linear(4, 8)) >>> module_action = TensorDictModule(module_action, in_keys=["hidden"], out_keys=["loc", "scale"]) >>> td_module_action = ProbabilisticActor( ... module=module_action, ... in_keys=["loc", "scale"], ... out_keys=["action"], ... distribution_class=TanhNormal, ... return_log_prob=True, ... ) >>> module_value = MLP(in_features=8, out_features=1, num_cells=[]) >>> td_module_value = ValueOperator( ... module=module_value, ... in_keys=["hidden", "action"], ... out_keys=["state_action_value"], ... ) >>> td_module = ActorCriticOperator(td_module_hidden, td_module_action, td_module_value) >>> td = TensorDict({"observation": torch.randn(3, 4)}, [3,]) >>> td_clone = td_module(td.clone()) >>> print(td_clone) TensorDict( fields={ action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), sample_log_prob: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> td_clone = td_module.get_policy_operator()(td.clone()) >>> print(td_clone) # no value TensorDict( fields={ action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), sample_log_prob: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False) >>> td_clone = td_module.get_critic_operator()(td.clone()) >>> print(td_clone) # no action TensorDict( fields={ action: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), hidden: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), loc: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), observation: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), sample_log_prob: Tensor(shape=torch.Size([3]), device=cpu, dtype=torch.float32, is_shared=False), scale: Tensor(shape=torch.Size([3, 4]), device=cpu, dtype=torch.float32, is_shared=False), state_action_value: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=None, is_shared=False)
- get_critic_operator() TensorDictModuleWrapper [source]¶
Returns a standalone critic network operator that maps a state-action pair to a critic estimate.
- get_policy_head() SafeSequential [source]¶
Returns the policy head.
- get_value_head() SafeSequential [source]¶
Returns the value head.