DistributionalQValueHook¶
- class torchrl.modules.DistributionalQValueHook(action_space: str, support: Tensor, var_nums: Optional[int] = None, action_value_key: Optional[Union[str, Tuple[str, ...]]] = None, action_mask_key: Optional[Union[str, Tuple[str, ...]]] = None, out_keys: Optional[Sequence[Union[str, Tuple[str, ...]]]] = None)[source]¶
Distributional Q-Value hook for Q-value policies.
Given the output of a mapping operator, representing the log-probability of the different action value bin available, a DistributionalQValueHook will transform these values into their argmax component using the provided support.
For more details regarding Distributional DQN, refer to “A Distributional Perspective on Reinforcement Learning”, https://arxiv.org/pdf/1707.06887.pdf
- Parameters:
action_space (str) – Action space. Must be one of
"one-hot"
,"mult-one-hot"
,"binary"
or"categorical"
.action_value_key (str or tuple of str, optional) – to be used when hooked on a TensorDictModule. The input key representing the action value. Defaults to
"action_value"
.action_mask_key (str or tuple of str, optional) – The input key representing the action mask. Defaults to
"None"
(equivalent to no masking).support (torch.Tensor) – support of the action values.
var_nums (int, optional) – if
action_space = "mult-one-hot"
, this value represents the cardinality of each action component.
Examples
>>> import torch >>> from tensordict import TensorDict >>> from torch import nn >>> from torchrl.data import OneHotDiscreteTensorSpec >>> from torchrl.modules.tensordict_module.actors import DistributionalQValueHook, Actor >>> td = TensorDict({'observation': torch.randn(5, 4)}, [5]) >>> nbins = 3 >>> class CustomDistributionalQval(nn.Module): ... def __init__(self): ... super().__init__() ... self.linear = nn.Linear(4, nbins*4) ... ... def forward(self, x): ... return self.linear(x).view(-1, nbins, 4).log_softmax(-2) ... >>> module = CustomDistributionalQval() >>> params = TensorDict.from_module(module) >>> action_spec = OneHotDiscreteTensorSpec(4) >>> hook = DistributionalQValueHook("one_hot", support = torch.arange(nbins)) >>> module.register_forward_hook(hook) >>> qvalue_actor = Actor(module=module, spec=action_spec, out_keys=["action", "action_value"]) >>> with params.to_module(module): ... qvalue_actor(td) >>> print(td) TensorDict( fields={ action: Tensor(torch.Size([5, 4]), dtype=torch.int64), action_value: Tensor(torch.Size([5, 3, 4]), dtype=torch.float32), observation: Tensor(torch.Size([5, 4]), dtype=torch.float32)}, batch_size=torch.Size([5]), device=None, is_shared=False)