RenameTransform¶
- class torchrl.envs.transforms.RenameTransform(in_keys, out_keys, in_keys_inv=None, out_keys_inv=None, create_copy=False)[source]¶
A transform to rename entries in the output tensordict.
- Parameters:
in_keys (sequence of NestedKey) – the entries to rename
out_keys (sequence of NestedKey) – the name of the entries after renaming.
in_keys_inv (sequence of NestedKey, optional) – the entries to rename before passing the input tensordict to
EnvBase._step()
.out_keys_inv (sequence of NestedKey, optional) – the names of the renamed entries passed to
EnvBase._step()
.create_copy (bool, optional) – if
True
, the entries will be copied with a different name rather than being renamed. This allows for renaming immutable entries such as"reward"
and"done"
.
Examples
>>> from torchrl.envs.libs.gym import GymEnv >>> env = TransformedEnv( ... GymEnv("Pendulum-v1"), ... RenameTransform(["observation", ], ["stuff",], create_copy=False), ... ) >>> tensordict = env.rollout(3) >>> print(tensordict) TensorDict( fields={ action: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False), done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), reward: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False), stuff: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False), stuff: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False) >>> # if the output is also an input, we need to rename if both ways: >>> from torchrl.envs.libs.brax import BraxEnv >>> env = TransformedEnv( ... BraxEnv("fast"), ... RenameTransform(["state"], ["newname"], ["state"], ["newname"]) ... ) >>> _ = env.set_seed(1) >>> tensordict = env.rollout(3) >>> assert "newname" in tensordict.keys() >>> assert "state" not in tensordict.keys()
- forward(tensordict: TensorDictBase) TensorDictBase ¶
Reads the input tensordict, and for the selected keys, applies the transform.
- transform_input_spec(input_spec: CompositeSpec) CompositeSpec [source]¶
Transforms the input spec such that the resulting spec matches transform mapping.
- Parameters:
input_spec (TensorSpec) – spec before the transform
- Returns:
expected spec after the transform
- transform_output_spec(output_spec: CompositeSpec) CompositeSpec [source]¶
Transforms the output spec such that the resulting spec matches transform mapping.
This method should generally be left untouched. Changes should be implemented using
transform_observation_spec()
,transform_reward_spec()
andtransformfull_done_spec()
. :param output_spec: spec before the transform :type output_spec: TensorSpec- Returns:
expected spec after the transform