submitit_delayed_launcher¶
- class torchrl.collectors.distributed.submitit_delayed_launcher(num_jobs, framework='distributed', backend='gloo', tcpport='10003', submitit_main_conf: dict = {'slurm_cpus_per_task': 32, 'slurm_gpus_per_node': 1, 'slurm_partition': 'train', 'timeout_min': 10}, submitit_collection_conf: dict = {'slurm_cpus_per_task': 32, 'slurm_gpus_per_node': 0, 'slurm_partition': 'train', 'timeout_min': 10})[source]¶
Delayed launcher for submitit.
In some cases, launched jobs cannot spawn other jobs on their own and this can only be done at the jump-host level.
In these cases, the
submitit_delayed_launcher()
can be used to pre-launch collector nodes that will wait for the main worker to provide the launching instruction.- Parameters:
num_jobs (int) – the number of collection jobs to be launched.
framework (str, optional) – the framework to use. Can be either
"distributed"
or"rpc"
."distributed"
requires aDistributedDataCollector
collector whereas"rpc"
requires aRPCDataCollector
. Defaults to"distributed"
.backend (str, optional) – torch.distributed backend in case
framework
points to"distributed"
. This value must match the one passed to the collector, otherwise main and satellite nodes will fail to reach the rendezvous and hang forever (ie no exception will be raised!) Defaults to'gloo'
.tcpport (int or str, optional) – the TCP port to use. Defaults to
torchrl.collectors.distributed.default_configs.TCP_PORT
submitit_main_conf (dict, optional) – the main node configuration to be passed to submitit. Defaults to
torchrl.collectors.distributed.default_configs.DEFAULT_SLURM_CONF_MAIN
submitit_collection_conf (dict, optional) – the configuration to be passed to submitit. Defaults to
torchrl.collectors.distributed.default_configs.DEFAULT_SLURM_CONF
Examples
>>> num_jobs=2 >>> @submitit_delayed_launcher(num_jobs=num_jobs) ... def main(): ... from torchrl.envs.utils import RandomPolicy from torchrl.envs.libs.gym import GymEnv ... from torchrl.data import BoundedTensorSpec ... collector = DistributedDataCollector( ... [EnvCreator(lambda: GymEnv("Pendulum-v1"))] * num_jobs, ... policy=RandomPolicy(BoundedTensorSpec(-1, 1, shape=(1,))), ... launcher="submitit_delayed", ... ) ... for data in collector: ... print(data) ... >>> if __name__ == "__main__": ... main() ...