Source code for torchrl.objectives.a2c
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import contextlib
from copy import deepcopy
from dataclasses import dataclass
from typing import Tuple
import torch
from tensordict import TensorDict, TensorDictBase
from tensordict.nn import dispatch, ProbabilisticTensorDictSequential, TensorDictModule
from tensordict.utils import NestedKey
from torch import distributions as d
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
_cache_values,
_clip_value_loss,
_GAMMA_LMBDA_DEPREC_ERROR,
_reduce,
default_value_kwargs,
distance_loss,
ValueEstimators,
)
from torchrl.objectives.value import (
GAE,
TD0Estimator,
TD1Estimator,
TDLambdaEstimator,
VTrace,
)
[docs]class A2CLoss(LossModule):
"""TorchRL implementation of the A2C loss.
A2C (Advantage Actor Critic) is a model-free, online RL algorithm that uses parallel rollouts of n steps to
update the policy, relying on the REINFORCE estimator to compute the gradient. It also adds an entropy term to the
objective function to improve exploration.
For more details regarding A2C, refer to: "Asynchronous Methods for Deep Reinforcment Learning",
https://arxiv.org/abs/1602.01783v2
Args:
actor_network (ProbabilisticTensorDictSequential): policy operator.
critic_network (ValueOperator): value operator.
entropy_bonus (bool): if ``True``, an entropy bonus will be added to the
loss to favour exploratory policies.
samples_mc_entropy (int): if the distribution retrieved from the policy
operator does not have a closed form
formula for the entropy, a Monte-Carlo estimate will be used.
``samples_mc_entropy`` will control how many
samples will be used to compute this estimate.
Defaults to ``1``.
entropy_coef (float): the weight of the entropy loss.
critic_coef (float): the weight of the critic loss.
loss_critic_type (str): loss function for the value discrepancy.
Can be one of "l1", "l2" or "smooth_l1". Defaults to ``"smooth_l1"``.
separate_losses (bool, optional): if ``True``, shared parameters between
policy and critic will only be trained on the policy loss.
Defaults to ``False``, ie. gradients are propagated to shared
parameters for both policy and critic losses.
advantage_key (str): [Deprecated, use set_keys(advantage_key=advantage_key) instead]
The input tensordict key where the advantage is expected to be written. default: "advantage"
value_target_key (str): [Deprecated, use set_keys() instead] the input
tensordict key where the target state value is expected to be written. Defaults to ``"value_target"``.
functional (bool, optional): whether modules should be functionalized.
Functionalizing permits features like meta-RL, but makes it
impossible to use distributed models (DDP, FSDP, ...) and comes
with a little cost. Defaults to ``True``.
reduction (str, optional): Specifies the reduction to apply to the output:
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
clip_value (float, optional): If provided, it will be used to compute a clipped version of the value
prediction with respect to the input value estimate and use it to calculate the value loss.
The purpose of clipping is to limit the impact of extreme value predictions, helping stabilize training
and preventing large updates. However, it will have no impact if the value estimate was done by the current
version of the value estimator. Defaults to ``None``.
.. note:
The advantage (typically GAE) can be computed by the loss function or
in the training loop. The latter option is usually preferred, but this is
up to the user to choose which option is to be preferred.
If the advantage key (``"advantage`` by default) is not present in the
input tensordict, the advantage will be computed by the :meth:`~.forward`
method.
A custom advantage module can be built using :meth:`~.make_value_estimator`.
The default is :class:`~torchrl.objectives.value.GAE` with hyperparameters
dictated by :func:`~torchrl.objectives.utils.default_value_kwargs`.
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import BoundedTensorSpec
>>> from torchrl.modules.distributions.continuous import NormalParamWrapper, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.a2c import A2CLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = BoundedTensorSpec(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = NormalParamWrapper(nn.Linear(n_obs, 2 * n_act))
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
... module=module,
... in_keys=["loc", "scale"],
... spec=spec,
... distribution_class=TanhNormal)
>>> module = nn.Linear(n_obs, 1)
>>> value = ValueOperator(
... module=module,
... in_keys=["observation"])
>>> loss = A2CLoss(actor, value, loss_critic_type="l2")
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
... "observation": torch.randn(*batch, n_obs),
... "action": action,
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "reward"): torch.randn(*batch, 1),
... ("next", "observation"): torch.randn(*batch, n_obs),
... }, batch)
>>> loss(data)
TensorDict(
fields={
entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_critic: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_objective: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
This class is compatible with non-tensordict based modules too and can be
used without recurring to any tensordict-related primitive. In this case,
the expected keyword arguments are:
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and critic.
The return value is a tuple of tensors in the following order:
``["loss_objective"]`` + ``["loss_critic"]`` if critic_coef is not None + ``["entropy", "loss_entropy"]`` if entropy_bonus is True and critic_coef is not None
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import BoundedTensorSpec
>>> from torchrl.modules.distributions.continuous import NormalParamWrapper, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.a2c import A2CLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = BoundedTensorSpec(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = NormalParamWrapper(nn.Linear(n_obs, 2 * n_act))
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
... module=module,
... in_keys=["loc", "scale"],
... spec=spec,
... distribution_class=TanhNormal)
>>> module = nn.Linear(n_obs, 1)
>>> value = ValueOperator(
... module=module,
... in_keys=["observation"])
>>> loss = A2CLoss(actor, value, loss_critic_type="l2")
>>> batch = [2, ]
>>> loss_obj, loss_critic, entropy, loss_entropy = loss(
... observation = torch.randn(*batch, n_obs),
... action = spec.rand(batch),
... next_done = torch.zeros(*batch, 1, dtype=torch.bool),
... next_terminated = torch.zeros(*batch, 1, dtype=torch.bool),
... next_reward = torch.randn(*batch, 1),
... next_observation = torch.randn(*batch, n_obs))
>>> loss_obj.backward()
The output keys can also be filtered using the :meth:`SACLoss.select_out_keys`
method.
Examples:
>>> loss.select_out_keys('loss_objective', 'loss_critic')
>>> loss_obj, loss_critic = loss(
... observation = torch.randn(*batch, n_obs),
... action = spec.rand(batch),
... next_done = torch.zeros(*batch, 1, dtype=torch.bool),
... next_terminated = torch.zeros(*batch, 1, dtype=torch.bool),
... next_reward = torch.randn(*batch, 1),
... next_observation = torch.randn(*batch, n_obs))
>>> loss_obj.backward()
"""
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values.
Attributes:
advantage (NestedKey): The input tensordict key where the advantage is expected.
Will be used for the underlying value estimator. Defaults to ``"advantage"``.
value_target (NestedKey): The input tensordict key where the target state value is expected.
Will be used for the underlying value estimator Defaults to ``"value_target"``.
value (NestedKey): The input tensordict key where the state value is expected.
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
action (NestedKey): The input tensordict key where the action is expected.
Defaults to ``"action"``.
reward (NestedKey): The input tensordict key where the reward is expected.
Will be used for the underlying value estimator. Defaults to ``"reward"``.
done (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is done. Will be used for the underlying value estimator.
Defaults to ``"done"``.
terminated (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is terminated. Will be used for the underlying value estimator.
Defaults to ``"terminated"``.
"""
advantage: NestedKey = "advantage"
value_target: NestedKey = "value_target"
value: NestedKey = "state_value"
action: NestedKey = "action"
reward: NestedKey = "reward"
done: NestedKey = "done"
terminated: NestedKey = "terminated"
sample_log_prob: NestedKey = "sample_log_prob"
default_keys = _AcceptedKeys()
default_value_estimator: ValueEstimators = ValueEstimators.GAE
def __init__(
self,
actor_network: ProbabilisticTensorDictSequential = None,
critic_network: TensorDictModule = None,
*,
entropy_bonus: bool = True,
samples_mc_entropy: int = 1,
entropy_coef: float = 0.01,
critic_coef: float = 1.0,
loss_critic_type: str = "smooth_l1",
gamma: float = None,
separate_losses: bool = False,
advantage_key: str = None,
value_target_key: str = None,
functional: bool = True,
actor: ProbabilisticTensorDictSequential = None,
critic: ProbabilisticTensorDictSequential = None,
reduction: str = None,
clip_value: float | None = None,
):
if actor is not None:
actor_network = actor
del actor
if critic is not None:
critic_network = critic
del critic
if actor_network is None or critic_network is None:
raise TypeError(
"Missing positional arguments actor_network or critic_network."
)
if reduction is None:
reduction = "mean"
self._functional = functional
self._out_keys = None
super().__init__()
self._set_deprecated_ctor_keys(
advantage=advantage_key, value_target=value_target_key
)
if functional:
self.convert_to_functional(
actor_network,
"actor_network",
)
else:
self.actor_network = actor_network
if separate_losses:
# we want to make sure there are no duplicates in the params: the
# params of critic must be refs to actor if they're shared
policy_params = list(actor_network.parameters())
else:
policy_params = None
if functional:
self.convert_to_functional(
critic_network, "critic_network", compare_against=policy_params
)
else:
self.critic_network = critic_network
self.target_critic_network_params = None
self.samples_mc_entropy = samples_mc_entropy
self.entropy_bonus = entropy_bonus and entropy_coef
self.reduction = reduction
try:
device = next(self.parameters()).device
except AttributeError:
device = torch.device("cpu")
self.register_buffer(
"entropy_coef", torch.as_tensor(entropy_coef, device=device)
)
self.register_buffer("critic_coef", torch.as_tensor(critic_coef, device=device))
if gamma is not None:
raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
self.loss_critic_type = loss_critic_type
if clip_value is not None:
if isinstance(clip_value, float):
clip_value = torch.tensor(clip_value)
elif isinstance(clip_value, torch.Tensor):
if clip_value.numel() != 1:
raise ValueError(
f"clip_value must be a float or a scalar tensor, got {clip_value}."
)
else:
raise ValueError(
f"clip_value must be a float or a scalar tensor, got {clip_value}."
)
self.register_buffer("clip_value", clip_value)
@property
def functional(self):
return self._functional
@property
def in_keys(self):
keys = [
self.tensor_keys.action,
("next", self.tensor_keys.reward),
("next", self.tensor_keys.done),
("next", self.tensor_keys.terminated),
*self.actor_network.in_keys,
*[("next", key) for key in self.actor_network.in_keys],
]
if self.critic_coef:
keys.extend(self.critic_network.in_keys)
return list(set(keys))
@property
def out_keys(self):
if self._out_keys is None:
outs = ["loss_objective"]
if self.critic_coef:
outs.append("loss_critic")
if self.entropy_bonus:
outs.append("entropy")
outs.append("loss_entropy")
self._out_keys = outs
return self._out_keys
@out_keys.setter
def out_keys(self, value):
self._out_keys = value
def _forward_value_estimator_keys(self, **kwargs) -> None:
if self._value_estimator is not None:
self._value_estimator.set_keys(
advantage=self.tensor_keys.advantage,
value_target=self.tensor_keys.value_target,
value=self.tensor_keys.value,
reward=self.tensor_keys.reward,
done=self.tensor_keys.done,
terminated=self.tensor_keys.terminated,
)
def reset(self) -> None:
pass
def get_entropy_bonus(self, dist: d.Distribution) -> torch.Tensor:
try:
entropy = dist.entropy()
except NotImplementedError:
x = dist.rsample((self.samples_mc_entropy,))
entropy = -dist.log_prob(x).mean(0)
return entropy.unsqueeze(-1)
def _log_probs(
self, tensordict: TensorDictBase
) -> Tuple[torch.Tensor, d.Distribution]:
# current log_prob of actions
action = tensordict.get(self.tensor_keys.action)
if action.requires_grad:
raise RuntimeError(
f"tensordict stored {self.tensor_keys.action} require grad."
)
tensordict_clone = tensordict.select(
*self.actor_network.in_keys, strict=False
).clone()
with self.actor_network_params.to_module(
self.actor_network
) if self.functional else contextlib.nullcontext():
dist = self.actor_network.get_dist(tensordict_clone)
log_prob = dist.log_prob(action)
log_prob = log_prob.unsqueeze(-1)
return log_prob, dist
def loss_critic(self, tensordict: TensorDictBase) -> torch.Tensor:
if self.clip_value:
try:
old_state_value = tensordict.get(self.tensor_keys.value).clone()
except KeyError:
raise KeyError(
f"clip_value is set to {self.clip_value}, but "
f"the key {self.tensor_keys.value} was not found in the input tensordict. "
f"Make sure that the value_key passed to A2C exists in the input tensordict."
)
try:
# TODO: if the advantage is gathered by forward, this introduces an
# overhead that we could easily reduce.
target_return = tensordict.get(self.tensor_keys.value_target)
tensordict_select = tensordict.select(
*self.critic_network.in_keys, strict=False
)
with self.critic_network_params.to_module(
self.critic_network
) if self.functional else contextlib.nullcontext():
state_value = self.critic_network(
tensordict_select,
).get(self.tensor_keys.value)
loss_value = distance_loss(
target_return,
state_value,
loss_function=self.loss_critic_type,
)
except KeyError:
raise KeyError(
f"the key {self.tensor_keys.value_target} was not found in the input tensordict. "
f"Make sure you provided the right key and the value_target (i.e. the target "
f"return) has been retrieved accordingly. Advantage classes such as GAE, "
f"TDLambdaEstimate and TDEstimate all return a 'value_target' entry that "
f"can be used for the value loss."
)
clip_fraction = None
if self.clip_value:
loss_value, clip_fraction = _clip_value_loss(
old_state_value,
state_value,
self.clip_value.to(state_value.device),
target_return,
loss_value,
self.loss_critic_type,
)
return self.critic_coef * loss_value, clip_fraction
@property
@_cache_values
def _cached_detach_critic_network_params(self):
if not self.functional:
return None
return self.critic_network_params.detach()
[docs] @dispatch()
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
tensordict = tensordict.clone(False)
advantage = tensordict.get(self.tensor_keys.advantage, None)
if advantage is None:
self.value_estimator(
tensordict,
params=self._cached_detach_critic_network_params,
target_params=self.target_critic_network_params,
)
advantage = tensordict.get(self.tensor_keys.advantage)
assert not advantage.requires_grad
log_probs, dist = self._log_probs(tensordict)
loss = -(log_probs * advantage)
td_out = TensorDict({"loss_objective": loss}, batch_size=[])
if self.entropy_bonus:
entropy = self.get_entropy_bonus(dist)
td_out.set("entropy", entropy.detach().mean()) # for logging
td_out.set("loss_entropy", -self.entropy_coef * entropy)
if self.critic_coef:
loss_critic, value_clip_fraction = self.loss_critic(tensordict)
td_out.set("loss_critic", loss_critic)
if value_clip_fraction is not None:
td_out.set("value_clip_fraction", value_clip_fraction)
td_out = td_out.named_apply(
lambda name, value: _reduce(value, reduction=self.reduction).squeeze(-1)
if name.startswith("loss_")
else value,
batch_size=[],
)
return td_out
[docs] def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
if value_type is None:
value_type = self.default_value_estimator
self.value_type = value_type
hp = dict(default_value_kwargs(value_type))
hp.update(hyperparams)
if hasattr(self, "gamma"):
hp["gamma"] = self.gamma
if value_type == ValueEstimators.TD1:
self._value_estimator = TD1Estimator(
value_network=self.critic_network, **hp
)
elif value_type == ValueEstimators.TD0:
self._value_estimator = TD0Estimator(
value_network=self.critic_network, **hp
)
elif value_type == ValueEstimators.GAE:
self._value_estimator = GAE(value_network=self.critic_network, **hp)
elif value_type == ValueEstimators.TDLambda:
self._value_estimator = TDLambdaEstimator(
value_network=self.critic_network, **hp
)
elif value_type == ValueEstimators.VTrace:
# VTrace currently does not support functional call on the actor
if self.functional:
actor_with_params = deepcopy(self.actor_network)
self.actor_network_params.to_module(actor_with_params)
else:
actor_with_params = self.actor_network
self._value_estimator = VTrace(
value_network=self.critic_network, actor_network=actor_with_params, **hp
)
else:
raise NotImplementedError(f"Unknown value type {value_type}")
tensor_keys = {
"advantage": self.tensor_keys.advantage,
"value": self.tensor_keys.value,
"value_target": self.tensor_keys.value_target,
"reward": self.tensor_keys.reward,
"done": self.tensor_keys.done,
"terminated": self.tensor_keys.terminated,
"sample_log_prob": self.tensor_keys.sample_log_prob,
}
self._value_estimator.set_keys(**tensor_keys)