Source code for torchrl.modules.tensordict_module.sequence
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from tensordict.nn import TensorDictModule, TensorDictSequential
from torch import nn
from torchrl.data.tensor_specs import CompositeSpec
from torchrl.modules.tensordict_module.common import SafeModule
[docs]class SafeSequential(TensorDictSequential, SafeModule):
"""A safe sequence of TensorDictModules.
Similarly to :obj:`nn.Sequence` which passes a tensor through a chain of mappings that read and write a single tensor
each, this module will read and write over a tensordict by querying each of the input modules.
When calling a :obj:`TensorDictSequencial` instance with a functional module, it is expected that the parameter lists (and
buffers) will be concatenated in a single list.
Args:
modules (iterable of TensorDictModules): ordered sequence of TensorDictModule instances to be run sequentially.
partial_tolerant (bool, optional): if ``True``, the input tensordict can miss some of the input keys.
If so, the only module that will be executed are those who can be executed given the keys that
are present.
Also, if the input tensordict is a lazy stack of tensordicts AND if partial_tolerant is ``True`` AND if the
stack does not have the required keys, then SafeSequential will scan through the sub-tensordicts
looking for those that have the required keys, if any.
TensorDictSequence supports functional, modular and vmap coding:
Examples:
>>> import torch
>>> from tensordict import TensorDict
>>> from torchrl.data import CompositeSpec, UnboundedContinuousTensorSpec
>>> from torchrl.modules import TanhNormal, SafeSequential, TensorDictModule, NormalParamWrapper
>>> from torchrl.modules.tensordict_module import SafeProbabilisticModule
>>> td = TensorDict({"input": torch.randn(3, 4)}, [3,])
>>> spec1 = CompositeSpec(hidden=UnboundedContinuousTensorSpec(4), loc=None, scale=None)
>>> net1 = NormalParamWrapper(torch.nn.Linear(4, 8))
>>> module1 = TensorDictModule(net1, in_keys=["input"], out_keys=["loc", "scale"])
>>> td_module1 = SafeProbabilisticModule(
... module=module1,
... spec=spec1,
... in_keys=["loc", "scale"],
... out_keys=["hidden"],
... distribution_class=TanhNormal,
... return_log_prob=True,
... )
>>> spec2 = UnboundedContinuousTensorSpec(8)
>>> module2 = torch.nn.Linear(4, 8)
>>> td_module2 = TensorDictModule(
... module=module2,
... spec=spec2,
... in_keys=["hidden"],
... out_keys=["output"],
... )
>>> td_module = SafeSequential(td_module1, td_module2)
>>> params = TensorDict.from_module(td_module)
>>> with params.to_module(td_module):
... td_module(td)
>>> print(td)
TensorDict(
fields={
hidden: Tensor(torch.Size([3, 4]), dtype=torch.float32),
input: Tensor(torch.Size([3, 4]), dtype=torch.float32),
loc: Tensor(torch.Size([3, 4]), dtype=torch.float32),
output: Tensor(torch.Size([3, 8]), dtype=torch.float32),
sample_log_prob: Tensor(torch.Size([3, 1]), dtype=torch.float32),
scale: Tensor(torch.Size([3, 4]), dtype=torch.float32)},
batch_size=torch.Size([3]),
device=None,
is_shared=False)
>>> # The module spec aggregates all the input specs:
>>> print(td_module.spec)
CompositeSpec(
hidden: UnboundedContinuousTensorSpec(
shape=torch.Size([4]), space=None, device=cpu, dtype=torch.float32, domain=continuous),
loc: None,
scale: None,
output: UnboundedContinuousTensorSpec(
shape=torch.Size([8]), space=None, device=cpu, dtype=torch.float32, domain=continuous))
In the vmap case:
>>> from torch import vmap
>>> params = params.expand(4, *params.shape)
>>> td_vmap = vmap(td_module, (None, 0))(td, params)
>>> print(td_vmap)
TensorDict(
fields={
hidden: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32),
input: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32),
loc: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32),
output: Tensor(torch.Size([4, 3, 8]), dtype=torch.float32),
sample_log_prob: Tensor(torch.Size([4, 3, 1]), dtype=torch.float32),
scale: Tensor(torch.Size([4, 3, 4]), dtype=torch.float32)},
batch_size=torch.Size([4, 3]),
device=None,
is_shared=False)
"""
module: nn.ModuleList
def __init__(
self,
*modules: TensorDictModule,
partial_tolerant: bool = False,
):
self.partial_tolerant = partial_tolerant
in_keys, out_keys = self._compute_in_and_out_keys(modules)
spec = CompositeSpec()
for module in modules:
try:
spec.update(module.spec)
except AttributeError:
spec.update(CompositeSpec({key: None for key in module.out_keys}))
super(TensorDictSequential, self).__init__(
spec=spec,
module=nn.ModuleList(list(modules)),
in_keys=in_keys,
out_keys=out_keys,
)