Source code for torchrl.data.datasets.minari_data
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import importlib.util
import json
import os.path
import shutil
import tempfile
from collections import defaultdict
from contextlib import nullcontext
from dataclasses import asdict
from pathlib import Path
from typing import Callable
import torch
from tensordict import PersistentTensorDict, TensorDict
from torchrl._utils import KeyDependentDefaultDict, logger as torchrl_logger
from torchrl.data.datasets.common import BaseDatasetExperienceReplay
from torchrl.data.datasets.utils import _get_root_dir
from torchrl.data.replay_buffers.samplers import Sampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.envs.utils import _classproperty
_has_tqdm = importlib.util.find_spec("tqdm", None) is not None
_has_minari = importlib.util.find_spec("minari", None) is not None
_NAME_MATCH = KeyDependentDefaultDict(lambda key: key)
_NAME_MATCH["observations"] = "observation"
_NAME_MATCH["rewards"] = "reward"
_NAME_MATCH["truncations"] = "truncated"
_NAME_MATCH["terminations"] = "terminated"
_NAME_MATCH["actions"] = "action"
_NAME_MATCH["infos"] = "info"
_DTYPE_DIR = {
"float16": torch.float16,
"float32": torch.float32,
"float64": torch.float64,
"int64": torch.int64,
"int32": torch.int32,
"uint8": torch.uint8,
}
[docs]class MinariExperienceReplay(BaseDatasetExperienceReplay):
"""Minari Experience replay dataset.
Learn more about Minari on their website: https://minari.farama.org/
The data format follows the :ref:`TED convention <TED-format>`.
Args:
dataset_id (str): The dataset to be downloaded. Must be part of MinariExperienceReplay.available_datasets
batch_size (int): Batch-size used during sampling. Can be overridden by `data.sample(batch_size)` if
necessary.
Keyword Args:
root (Path or str, optional): The Minari dataset root directory.
The actual dataset memory-mapped files will be saved under
`<root>/<dataset_id>`. If none is provided, it defaults to
``~/.cache/torchrl/minari`.
download (bool or str, optional): Whether the dataset should be downloaded if
not found. Defaults to ``True``. Download can also be passed as ``"force"``,
in which case the downloaded data will be overwritten.
sampler (Sampler, optional): the sampler to be used. If none is provided
a default RandomSampler() will be used.
writer (Writer, optional): the writer to be used. If none is provided
a default :class:`~torchrl.data.replay_buffers.writers.ImmutableDatasetWriter` will be used.
collate_fn (callable, optional): merges a list of samples to form a
mini-batch of Tensor(s)/outputs. Used when using batched
loading from a map-style dataset.
pin_memory (bool): whether pin_memory() should be called on the rb
samples.
prefetch (int, optional): number of next batches to be prefetched
using multithreading.
transform (Transform, optional): Transform to be executed when sample() is called.
To chain transforms use the :class:`~torchrl.envs.transforms.transforms.Compose` class.
split_trajs (bool, optional): if ``True``, the trajectories will be split
along the first dimension and padded to have a matching shape.
To split the trajectories, the ``"done"`` signal will be used, which
is recovered via ``done = truncated | terminated``. In other words,
it is assumed that any ``truncated`` or ``terminated`` signal is
equivalent to the end of a trajectory.
Defaults to ``False``.
Attributes:
available_datasets: a list of accepted entries to be downloaded.
.. note::
Text data is currenrtly discarded from the wrapped dataset, as there is not
PyTorch native way of representing text data.
If this feature is required, please post an issue on TorchRL's GitHub
repository.
Examples:
>>> from torchrl.data.datasets.minari_data import MinariExperienceReplay
>>> data = MinariExperienceReplay("door-human-v1", batch_size=32, download="force")
>>> for sample in data:
... torchrl_logger.info(sample)
... break
TensorDict(
fields={
action: Tensor(shape=torch.Size([32, 28]), device=cpu, dtype=torch.float32, is_shared=False),
index: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False),
info: TensorDict(
fields={
success: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32]),
device=cpu,
is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
info: TensorDict(
fields={
success: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32]),
device=cpu,
is_shared=False),
observation: Tensor(shape=torch.Size([32, 39]), device=cpu, dtype=torch.float64, is_shared=False),
reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float64, is_shared=False),
state: TensorDict(
fields={
door_body_pos: Tensor(shape=torch.Size([32, 3]), device=cpu, dtype=torch.float64, is_shared=False),
qpos: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False),
qvel: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False)},
batch_size=torch.Size([32]),
device=cpu,
is_shared=False),
terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([32]),
device=cpu,
is_shared=False),
observation: Tensor(shape=torch.Size([32, 39]), device=cpu, dtype=torch.float64, is_shared=False),
state: TensorDict(
fields={
door_body_pos: Tensor(shape=torch.Size([32, 3]), device=cpu, dtype=torch.float64, is_shared=False),
qpos: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False),
qvel: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False)},
batch_size=torch.Size([32]),
device=cpu,
is_shared=False)},
batch_size=torch.Size([32]),
device=cpu,
is_shared=False)
"""
def __init__(
self,
dataset_id,
batch_size: int,
*,
root: str | Path | None = None,
download: bool = True,
sampler: Sampler | None = None,
writer: Writer | None = None,
collate_fn: Callable | None = None,
pin_memory: bool = False,
prefetch: int | None = None,
transform: "torchrl.envs.Transform" | None = None, # noqa-F821
split_trajs: bool = False,
):
self.dataset_id = dataset_id
if root is None:
root = _get_root_dir("minari")
os.makedirs(root, exist_ok=True)
self.root = root
self.split_trajs = split_trajs
self.download = download
if self.download == "force" or (self.download and not self._is_downloaded()):
if self.download == "force":
try:
if os.path.exists(self.data_path_root):
shutil.rmtree(self.data_path_root)
if self.data_path != self.data_path_root:
shutil.rmtree(self.data_path)
except FileNotFoundError:
pass
storage = self._download_and_preproc()
elif self.split_trajs and not os.path.exists(self.data_path):
storage = self._make_split()
else:
storage = self._load()
storage = TensorStorage(storage)
if writer is None:
writer = ImmutableDatasetWriter()
super().__init__(
storage=storage,
sampler=sampler,
writer=writer,
collate_fn=collate_fn,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
transform=transform,
)
@_classproperty
def available_datasets(self):
if not _has_minari:
raise ImportError("minari library not found.")
import minari
return minari.list_remote_datasets().keys()
def _is_downloaded(self):
return os.path.exists(self.data_path_root)
@property
def data_path(self) -> Path:
if self.split_trajs:
return Path(self.root) / (self.dataset_id + "_split")
return self.data_path_root
@property
def data_path_root(self) -> Path:
return Path(self.root) / self.dataset_id
@property
def metadata_path(self) -> Path:
return Path(self.root) / self.dataset_id / "env_metadata.json"
def _download_and_preproc(self):
if not _has_minari:
raise ImportError("minari library not found.")
import minari
if _has_tqdm:
from tqdm import tqdm
with tempfile.TemporaryDirectory() as tmpdir:
os.environ["MINARI_DATASETS_PATH"] = tmpdir
minari.download_dataset(dataset_id=self.dataset_id)
parent_dir = Path(tmpdir) / self.dataset_id / "data"
td_data = TensorDict({}, [])
total_steps = 0
torchrl_logger.info("first read through data to create data structure...")
h5_data = PersistentTensorDict.from_h5(parent_dir / "main_data.hdf5")
# populate the tensordict
episode_dict = {}
for i, (episode_key, episode) in enumerate(h5_data.items()):
episode_num = int(episode_key[len("episode_") :])
episode_len = episode["actions"].shape[0]
episode_dict[episode_num] = (episode_key, episode_len)
# Get the total number of steps for the dataset
total_steps += episode_len
if i == 0:
td_data.set("episode", 0)
for key, val in episode.items():
match = _NAME_MATCH[key]
if key in ("observations", "state", "infos"):
if (
not val.shape
): # no need for this, we don't need the proper length: or steps != val.shape[0] - 1:
if val.is_empty():
continue
val = _patch_info(val)
td_data.set(("next", match), torch.zeros_like(val[0]))
td_data.set(match, torch.zeros_like(val[0]))
if key not in ("terminations", "truncations", "rewards"):
td_data.set(match, torch.zeros_like(val[0]))
else:
td_data.set(
("next", match),
torch.zeros_like(val[0].unsqueeze(-1)),
)
# give it the proper size
td_data["next", "done"] = (
td_data["next", "truncated"] | td_data["next", "terminated"]
)
if "terminated" in td_data.keys():
td_data["done"] = td_data["truncated"] | td_data["terminated"]
td_data = td_data.expand(total_steps)
# save to designated location
torchrl_logger.info(f"creating tensordict data in {self.data_path_root}: ")
td_data = td_data.memmap_like(self.data_path_root)
torchrl_logger.info(f"tensordict structure: {td_data}")
torchrl_logger.info(f"Reading data from {max(*episode_dict) + 1} episodes")
index = 0
with tqdm(total=total_steps) if _has_tqdm else nullcontext() as pbar:
# iterate over episodes and populate the tensordict
for episode_num in sorted(episode_dict):
episode_key, steps = episode_dict[episode_num]
episode = h5_data.get(episode_key)
idx = slice(index, (index + steps))
data_view = td_data[idx]
data_view.fill_("episode", episode_num)
for key, val in episode.items():
match = _NAME_MATCH[key]
if key in (
"observations",
"state",
"infos",
):
if not val.shape or steps != val.shape[0] - 1:
if val.is_empty():
continue
val = _patch_info(val)
if steps != val.shape[0] - 1:
raise RuntimeError(
f"Mismatching number of steps for key {key}: was {steps} but got {val.shape[0] - 1}."
)
data_view["next", match].copy_(val[1:])
data_view[match].copy_(val[:-1])
elif key not in ("terminations", "truncations", "rewards"):
if steps is None:
steps = val.shape[0]
else:
if steps != val.shape[0]:
raise RuntimeError(
f"Mismatching number of steps for key {key}: was {steps} but got {val.shape[0]}."
)
data_view[match].copy_(val)
else:
if steps is None:
steps = val.shape[0]
else:
if steps != val.shape[0]:
raise RuntimeError(
f"Mismatching number of steps for key {key}: was {steps} but got {val.shape[0]}."
)
data_view[("next", match)].copy_(val.unsqueeze(-1))
data_view["next", "done"].copy_(
data_view["next", "terminated"] | data_view["next", "truncated"]
)
if "done" in data_view.keys():
data_view["done"].copy_(
data_view["terminated"] | data_view["truncated"]
)
if pbar is not None:
pbar.update(steps)
pbar.set_description(
f"index={index} - episode num {episode_num}"
)
index += steps
h5_data.close()
# Add a "done" entry
if self.split_trajs:
with td_data.unlock_():
from torchrl.objectives.utils import split_trajectories
td_data = split_trajectories(td_data).memmap_(self.data_path)
with open(self.metadata_path, "w") as metadata_file:
dataset = minari.load_dataset(self.dataset_id)
self.metadata = asdict(dataset.spec)
self.metadata["observation_space"] = _spec_to_dict(
self.metadata["observation_space"]
)
self.metadata["action_space"] = _spec_to_dict(
self.metadata["action_space"]
)
json.dump(self.metadata, metadata_file)
self._load_and_proc_metadata()
return td_data
def _make_split(self):
from torchrl.collectors.utils import split_trajectories
self._load_and_proc_metadata()
td_data = TensorDict.load_memmap(self.data_path_root)
td_data = split_trajectories(td_data).memmap_(self.data_path)
return td_data
def _load(self):
self._load_and_proc_metadata()
return TensorDict.load_memmap(self.data_path)
def _load_and_proc_metadata(self):
with open(self.metadata_path, "r") as file:
self.metadata = json.load(file)
self.metadata["observation_space"] = _proc_spec(
self.metadata["observation_space"]
)
self.metadata["action_space"] = _proc_spec(self.metadata["action_space"])
def _proc_spec(spec):
if spec is None:
return
if spec["type"] == "Dict":
return CompositeSpec(
{key: _proc_spec(subspec) for key, subspec in spec["subspaces"].items()}
)
elif spec["type"] == "Box":
if all(item == -float("inf") for item in spec["low"]) and all(
item == float("inf") for item in spec["high"]
):
return UnboundedContinuousTensorSpec(
spec["shape"], dtype=_DTYPE_DIR[spec["dtype"]]
)
return BoundedTensorSpec(
shape=spec["shape"],
low=torch.as_tensor(spec["low"]),
high=torch.as_tensor(spec["high"]),
dtype=_DTYPE_DIR[spec["dtype"]],
)
elif spec["type"] == "Discrete":
return DiscreteTensorSpec(
spec["n"], shape=spec["shape"], dtype=_DTYPE_DIR[spec["dtype"]]
)
else:
raise NotImplementedError(f"{type(spec)}")
def _spec_to_dict(spec):
from torchrl.envs.libs.gym import gym_backend
if isinstance(spec, gym_backend("spaces").Dict):
return {
"type": "Dict",
"subspaces": {key: _spec_to_dict(val) for key, val in spec.items()},
}
if isinstance(spec, gym_backend("spaces").Box):
return {
"type": "Box",
"low": spec.low.tolist(),
"high": spec.high.tolist(),
"dtype": str(spec.dtype),
"shape": tuple(spec.shape),
}
if isinstance(spec, gym_backend("spaces").Discrete):
return {
"type": "Discrete",
"dtype": str(spec.dtype),
"n": int(spec.n),
"shape": tuple(spec.shape),
}
if isinstance(spec, gym_backend("spaces").Text):
return
raise NotImplementedError(f"{type(spec)}, {str(spec)}")
def _patch_info(info_td):
# Some info dicts have tensors with one less element than others
# We explicitely assume that the missing item is in the first position because
# it wasn't given at reset time.
# An alternative explanation could be that the last element is missing because
# deemed useless for training...
unique_shapes = defaultdict(list)
for subkey, subval in info_td.items():
unique_shapes[subval.shape[0]].append(subkey)
if len(unique_shapes) == 1:
unique_shapes[subval.shape[0] + 1] = []
if len(unique_shapes) != 2:
raise RuntimeError(
f"Unique shapes in a sub-tensordict can only be of length 2, got shapes {unique_shapes}."
)
val_td = info_td.to_tensordict()
min_shape = min(*unique_shapes) # can only be found at root
max_shape = min_shape + 1
val_td_sel = val_td.select(*unique_shapes[min_shape])
val_td_sel = val_td_sel.apply(
lambda x: torch.cat([torch.zeros_like(x[:1]), x], 0), batch_size=[min_shape + 1]
)
val_td_sel.update(val_td.select(*unique_shapes[max_shape]))
return val_td_sel