PolynomialLR¶
- class torch.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=5, power=1.0, last_epoch=-1, verbose='deprecated')[source]¶
Decays the learning rate of each parameter group using a polynomial function in the given total_iters.
When last_epoch=-1, sets initial lr as lr.
- Parameters
optimizer (Optimizer) – Wrapped optimizer.
total_iters (int) – The number of steps that the scheduler decays the learning rate. Default: 5.
power (float) – The power of the polynomial. Default: 1.0.
If
True
, prints a message to stdout for each update. Default:False
.Deprecated since version 2.2:
verbose
is deprecated. Please useget_last_lr()
to access the learning rate.
Example
>>> # Assuming optimizer uses lr = 0.001 for all groups >>> # lr = 0.001 if epoch == 0 >>> # lr = 0.00075 if epoch == 1 >>> # lr = 0.00050 if epoch == 2 >>> # lr = 0.00025 if epoch == 3 >>> # lr = 0.0 if epoch >= 4 >>> scheduler = PolynomialLR(optimizer, total_iters=4, power=1.0) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step()
- load_state_dict(state_dict)¶
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returned from a call to
state_dict()
.
- print_lr(is_verbose, group, lr, epoch=None)¶
Display the current learning rate.
Deprecated since version 2.4:
print_lr()
is deprecated. Please useget_last_lr()
to access the learning rate.
- state_dict()¶
Return the state of the scheduler as a
dict
.It contains an entry for every variable in self.__dict__ which is not the optimizer.
- step(epoch=None)¶
Perform a step.