LazyConv2d¶
- class torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)[source]¶
A
torch.nn.Conv2d
module with lazy initialization of thein_channels
argument.The
in_channels
argument of theConv2d
that is inferred from theinput.size(1)
. The attributes that will be lazily initialized are weight and bias.Check the
torch.nn.modules.lazy.LazyModuleMixin
for further documentation on lazy modules and their limitations.- Parameters
out_channels (int) – Number of channels produced by the convolution
stride (int or tuple, optional) – Stride of the convolution. Default: 1
padding (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool, optional) – If
True
, adds a learnable bias to the output. Default:True
padding_mode (str, optional) –
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
See also