Embedding¶
- class torch.ao.nn.quantized.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, dtype=torch.quint8)[source]¶
A quantized Embedding module with quantized packed weights as inputs. We adopt the same interface as torch.nn.Embedding, please see https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html for documentation.
Similar to
Embedding
, attributes will be randomly initialized at module creation time and will be overwritten later- Variables
weight (Tensor) – the non-learnable quantized weights of the module of shape .
- Examples::
>>> m = nn.quantized.Embedding(num_embeddings=10, embedding_dim=12) >>> indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8]) >>> output = m(indices) >>> print(output.size()) torch.Size([9, 12])