[docs]classAdadelta(Optimizer):def__init__(self,params:ParamsT,lr:Union[float,Tensor]=1.0,rho:float=0.9,eps:float=1e-6,weight_decay:float=0,foreach:Optional[bool]=None,*,capturable:bool=False,maximize:bool=False,differentiable:bool=False,):ifisinstance(lr,Tensor)andlr.numel()!=1:raiseValueError("Tensor lr must be 1-element")ifnot0.0<=lr:raiseValueError(f"Invalid learning rate: {lr}")ifnot0.0<=rho<=1.0:raiseValueError(f"Invalid rho value: {rho}")ifnot0.0<=eps:raiseValueError(f"Invalid epsilon value: {eps}")ifnot0.0<=weight_decay:raiseValueError(f"Invalid weight_decay value: {weight_decay}")defaults=dict(lr=lr,rho=rho,eps=eps,weight_decay=weight_decay,maximize=maximize,capturable=capturable,foreach=foreach,differentiable=differentiable,)super().__init__(params,defaults)def__setstate__(self,state):super().__setstate__(state)forgroupinself.param_groups:group.setdefault("foreach",None)group.setdefault("maximize",False)group.setdefault("differentiable",False)group.setdefault("capturable",False)forpingroup["params"]:p_state=self.state.get(p,[])iflen(p_state)!=0andnottorch.is_tensor(p_state["step"]):step_val=float(p_state["step"])p_state["step"]=(torch.tensor(step_val,dtype=_get_scalar_dtype(),device=p.device)ifgroup["capturable"]elsetorch.tensor(step_val,dtype=_get_scalar_dtype()))def_init_group(self,group:Dict[str,Any],params_with_grad:List[Tensor],grads:List[Tensor],square_avgs:List[Tensor],acc_deltas:List[Tensor],state_steps:List[Tensor],):has_complex=Falsep:Tensorforpingroup["params"]:ifp.gradisNone:continuehas_complex|=torch.is_complex(p)params_with_grad.append(p)ifp.grad.is_sparse:raiseRuntimeError("Adadelta does not support sparse gradients")grads.append(p.grad)state=self.state[p]# Lazy state initializationiflen(state)==0:state["step"]=(torch.zeros((),dtype=_get_scalar_dtype(),device=p.device)ifgroup["capturable"]elsetorch.zeros((),dtype=_get_scalar_dtype()))state["square_avg"]=torch.zeros_like(p,memory_format=torch.preserve_format)state["acc_delta"]=torch.zeros_like(p,memory_format=torch.preserve_format)square_avgs.append(state["square_avg"])acc_deltas.append(state["acc_delta"])state_steps.append(state["step"])returnhas_complex
[docs]@_use_grad_for_differentiabledefstep(self,closure=None):"""Perform a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """self._cuda_graph_capture_health_check()loss=NoneifclosureisnotNone:withtorch.enable_grad():loss=closure()forgroupinself.param_groups:params_with_grad:List[Tensor]=[]grads:List[Tensor]=[]square_avgs:List[Tensor]=[]acc_deltas:List[Tensor]=[]state_steps:List[Tensor]=[](lr,rho,eps,weight_decay,foreach,maximize,differentiable,capturable,)=(group["lr"],group["rho"],group["eps"],group["weight_decay"],group["foreach"],group["maximize"],group["differentiable"],group["capturable"],)has_complex=self._init_group(group,params_with_grad,grads,square_avgs,acc_deltas,state_steps)adadelta(params_with_grad,grads,square_avgs,acc_deltas,state_steps,lr=lr,rho=rho,eps=eps,weight_decay=weight_decay,foreach=foreach,maximize=maximize,differentiable=differentiable,capturable=capturable,has_complex=has_complex,)returnloss
Adadelta.__doc__=(r"""Implements Adadelta algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)}, \: \lambda \text{ (weight decay)} \\ &\textbf{initialize} : v_0 \leftarrow 0 \: \text{ (square avg)}, \: u_0 \leftarrow 0 \: \text{ (accumulate variables)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm} v_t \leftarrow v_{t-1} \rho + g^2_t (1 - \rho) \\ &\hspace{5mm}\Delta x_t \leftarrow \frac{\sqrt{u_{t-1} + \epsilon }}{ \sqrt{v_t + \epsilon} }g_t \hspace{21mm} \\ &\hspace{5mm} u_t \leftarrow u_{t-1} \rho + \Delta x^2_t (1 - \rho) \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \Delta x_t \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_. """+rf""" Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups rho (float, optional): coefficient used for computing a running average of squared gradients (default: 0.9). A higher value of `rho` will result in a slower average, which can be helpful for preventing oscillations in the learning process. eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-6). lr (float, Tensor, optional): coefficient that scale delta before it is applied to the parameters (default: 1.0) weight_decay (float, optional): weight decay (L2 penalty) (default: 0){_foreach_doc}{_capturable_doc}{_maximize_doc}{_differentiable_doc} .. _ADADELTA\: An Adaptive Learning Rate Method: https://arxiv.org/abs/1212.5701 """)def_single_tensor_adadelta(params:List[Tensor],grads:List[Tensor],square_avgs:List[Tensor],acc_deltas:List[Tensor],state_steps:List[Tensor],*,lr:float,rho:float,eps:float,weight_decay:float,maximize:bool,differentiable:bool,capturable:bool,has_complex:bool,):# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]ifnottorch._utils.is_compiling()andcapturable:capturable_supported_devices=_get_capturable_supported_devices(supports_xla=False)assertall(p.device.type==step.device.typeandp.device.typeincapturable_supported_devicesforp,stepinzip(params,state_steps)),f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."forparam,grad,square_avg,acc_delta,stepinzip(params,grads,square_avgs,acc_deltas,state_steps):step+=1grad=gradifnotmaximizeelse-gradifweight_decay!=0:grad=grad.add(param,alpha=weight_decay)iftorch.is_complex(param):square_avg=torch.view_as_real(square_avg)acc_delta=torch.view_as_real(acc_delta)grad=torch.view_as_real(grad)square_avg.mul_(rho).addcmul_(grad,grad,value=1-rho)std=square_avg.add(eps).sqrt_()delta=acc_delta.add(eps).sqrt_()ifdifferentiable:delta=delta.clone()delta.div_(std).mul_(grad)acc_delta.mul_(rho).addcmul_(delta,delta,value=1-rho)iftorch.is_complex(param):delta=torch.view_as_complex(delta)param.add_(delta,alpha=-lr)def_multi_tensor_adadelta(params:List[Tensor],grads:List[Tensor],square_avgs:List[Tensor],acc_deltas:List[Tensor],state_steps:List[Tensor],*,lr:float,rho:float,eps:float,weight_decay:float,maximize:bool,differentiable:bool,capturable:bool,has_complex:bool,):assertnotdifferentiable,"_foreach ops don't support autograd"# If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]ifnottorch._utils.is_compiling()andcapturable:capturable_supported_devices=_get_capturable_supported_devices(supports_xla=False)assertall(p.device.type==step.device.typeandp.device.typeincapturable_supported_devicesforp,stepinzip(params,state_steps)),f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}."iflen(params)==0:returngrouped_tensors=Optimizer._group_tensors_by_device_and_dtype([params,grads,square_avgs,acc_deltas,state_steps]# type: ignore[list-item])for(device_params_,device_grads_,device_square_avgs_,device_acc_deltas_,device_state_steps_,),_ingrouped_tensors.values():device_params=cast(List[Tensor],device_params_)device_grads=cast(List[Tensor],device_grads_)device_square_avgs=cast(List[Tensor],device_square_avgs_)device_acc_deltas=cast(List[Tensor],device_acc_deltas_)device_state_steps=cast(List[Tensor],device_state_steps_)ifhas_complex:_view_as_real(device_params,device_grads,device_square_avgs,device_acc_deltas)# Update steps# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just# wrapped it once now. The alpha is required to assure we go to the right overload.ifnottorch._utils.is_compiling()anddevice_state_steps[0].is_cpu:torch._foreach_add_(device_state_steps,torch.tensor(1.0,device="cpu"),alpha=1.0)else:torch._foreach_add_(device_state_steps,1)ifmaximize:device_grads=torch._foreach_neg(device_grads)# type: ignore[assignment]ifweight_decay!=0:# Re-use the intermediate memory (device_grads) already allocated for maximizeifmaximize:torch._foreach_add_(device_grads,device_params,alpha=weight_decay)else:device_grads=torch._foreach_add(# type: ignore[assignment]device_grads,device_params,alpha=weight_decay)torch._foreach_mul_(device_square_avgs,rho)torch._foreach_addcmul_(device_square_avgs,device_grads,device_grads,value=1-rho)std=torch._foreach_add(device_square_avgs,eps)torch._foreach_sqrt_(std)deltas=torch._foreach_add(device_acc_deltas,eps)torch._foreach_sqrt_(deltas)torch._foreach_div_(deltas,std)torch._foreach_mul_(deltas,device_grads)torch._foreach_mul_(device_acc_deltas,rho)torch._foreach_addcmul_(device_acc_deltas,deltas,deltas,value=1-rho)# If LR is a tensor, the else branch will internally call item()# which will cause silent incorrectness if we are capturingifcapturableandisinstance(lr,torch.Tensor):torch._foreach_mul_(deltas,-lr)torch._foreach_add_(device_params,deltas)else:torch._foreach_add_(device_params,deltas,alpha=-lr)@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adadelta)defadadelta(params:List[Tensor],grads:List[Tensor],square_avgs:List[Tensor],acc_deltas:List[Tensor],state_steps:List[Tensor],# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627# setting this as kwarg for now as functional API is compiled by torch/distributed/optimcapturable:bool=False,foreach:Optional[bool]=None,differentiable:bool=False,has_complex:bool=False,*,lr:float,rho:float,eps:float,weight_decay:float,maximize:bool,):r"""Functional API that performs Adadelta algorithm computation. See :class:`~torch.optim.Adadelta` for details. """# this check is slow during compilation, so we skip it# if it's strictly needed we can add this check back in dynamoifnottorch._utils.is_compiling()andnotall(isinstance(t,torch.Tensor)fortinstate_steps):raiseRuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")# We still respect when the user inputs False for foreach.ifforeachisNone:_,foreach=_default_to_fused_or_foreach(params,differentiable,use_fused=False)ifforeachandtorch.jit.is_scripting():raiseRuntimeError("torch.jit.script not supported with foreach optimizers")ifforeachandnottorch.jit.is_scripting():func=_multi_tensor_adadeltaelse:func=_single_tensor_adadeltafunc(params,grads,square_avgs,acc_deltas,state_steps,lr=lr,rho=rho,eps=eps,weight_decay=weight_decay,maximize=maximize,differentiable=differentiable,capturable=capturable,has_complex=has_complex,)
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.