Shortcuts

Source code for torch.nn.modules.linear

# mypy: allow-untyped-defs
import math
from typing import Any

import torch
from torch import Tensor
from torch.nn import functional as F, init
from torch.nn.parameter import Parameter, UninitializedParameter

from .lazy import LazyModuleMixin
from .module import Module


__all__ = [
    "Bilinear",
    "Identity",
    "LazyLinear",
    "Linear",
]


[docs]class Identity(Module): r"""A placeholder identity operator that is argument-insensitive. Args: args: any argument (unused) kwargs: any keyword argument (unused) Shape: - Input: :math:`(*)`, where :math:`*` means any number of dimensions. - Output: :math:`(*)`, same shape as the input. Examples:: >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 20]) """ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__() def forward(self, input: Tensor) -> Tensor: return input
[docs]class Linear(Module): r"""Applies an affine linear transformation to the incoming data: :math:`y = xA^T + b`. This module supports :ref:`TensorFloat32<tf32_on_ampere>`. On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward. Args: in_features: size of each input sample out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(*, H_{in})` where :math:`*` means any number of dimensions including none and :math:`H_{in} = \text{in\_features}`. - Output: :math:`(*, H_{out})` where all but the last dimension are the same shape as the input and :math:`H_{out} = \text{out\_features}`. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30]) """ __constants__ = ["in_features", "out_features"] in_features: int out_features: int weight: Tensor def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter( torch.empty((out_features, in_features), **factory_kwargs) ) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: # Setting a=sqrt(5) in kaiming_uniform is the same as initializing with # uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see # https://github.com/pytorch/pytorch/issues/57109 init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 init.uniform_(self.bias, -bound, bound) def forward(self, input: Tensor) -> Tensor: return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: return f"in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}"
# This class exists solely to avoid triggering an obscure error when scripting # an improperly quantized attention layer. See this issue for details: # https://github.com/pytorch/pytorch/issues/58969 # TODO: fail fast on quantization API usage error, then remove this class # and replace uses of it with plain Linear class NonDynamicallyQuantizableLinear(Linear): def __init__( self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, ) -> None: super().__init__( in_features, out_features, bias=bias, device=device, dtype=dtype )
[docs]class Bilinear(Module): r"""Applies a bilinear transformation to the incoming data: :math:`y = x_1^T A x_2 + b`. Args: in1_features: size of each first input sample in2_features: size of each second input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: ``True`` Shape: - Input1: :math:`(*, H_{in1})` where :math:`H_{in1}=\text{in1\_features}` and :math:`*` means any number of additional dimensions including none. All but the last dimension of the inputs should be the same. - Input2: :math:`(*, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`. - Output: :math:`(*, H_{out})` where :math:`H_{out}=\text{out\_features}` and all but the last dimension are the same shape as the input. Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in1\_features}, \text{in2\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in1\_features}}` Examples:: >>> m = nn.Bilinear(20, 30, 40) >>> input1 = torch.randn(128, 20) >>> input2 = torch.randn(128, 30) >>> output = m(input1, input2) >>> print(output.size()) torch.Size([128, 40]) """ __constants__ = ["in1_features", "in2_features", "out_features"] in1_features: int in2_features: int out_features: int weight: Tensor def __init__( self, in1_features: int, in2_features: int, out_features: int, bias: bool = True, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.in1_features = in1_features self.in2_features = in2_features self.out_features = out_features self.weight = Parameter( torch.empty((out_features, in1_features, in2_features), **factory_kwargs) ) if bias: self.bias = Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self) -> None: bound = 1 / math.sqrt(self.weight.size(1)) init.uniform_(self.weight, -bound, bound) if self.bias is not None: init.uniform_(self.bias, -bound, bound) def forward(self, input1: Tensor, input2: Tensor) -> Tensor: return F.bilinear(input1, input2, self.weight, self.bias) def extra_repr(self) -> str: return ( f"in1_features={self.in1_features}, in2_features={self.in2_features}, " f"out_features={self.out_features}, bias={self.bias is not None}" )
[docs]class LazyLinear(LazyModuleMixin, Linear): r"""A :class:`torch.nn.Linear` module where `in_features` is inferred. In this module, the `weight` and `bias` are of :class:`torch.nn.UninitializedParameter` class. They will be initialized after the first call to ``forward`` is done and the module will become a regular :class:`torch.nn.Linear` module. The ``in_features`` argument of the :class:`Linear` is inferred from the ``input.shape[-1]``. Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation on lazy modules and their limitations. Args: out_features: size of each output sample bias: If set to ``False``, the layer will not learn an additive bias. Default: ``True`` Attributes: weight: the learnable weights of the module of shape :math:`(\text{out\_features}, \text{in\_features})`. The values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where :math:`k = \frac{1}{\text{in\_features}}` bias: the learnable bias of the module of shape :math:`(\text{out\_features})`. If :attr:`bias` is ``True``, the values are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where :math:`k = \frac{1}{\text{in\_features}}` """ cls_to_become = Linear # type: ignore[assignment] weight: UninitializedParameter bias: UninitializedParameter # type: ignore[assignment] def __init__( self, out_features: int, bias: bool = True, device=None, dtype=None ) -> None: factory_kwargs = {"device": device, "dtype": dtype} # bias is hardcoded to False to avoid creating tensor # that will soon be overwritten. super().__init__(0, 0, False) self.weight = UninitializedParameter(**factory_kwargs) self.out_features = out_features if bias: self.bias = UninitializedParameter(**factory_kwargs) def reset_parameters(self) -> None: if not self.has_uninitialized_params() and self.in_features != 0: super().reset_parameters() def initialize_parameters(self, input) -> None: # type: ignore[override] if self.has_uninitialized_params(): with torch.no_grad(): self.in_features = input.shape[-1] self.weight.materialize((self.out_features, self.in_features)) if self.bias is not None: self.bias.materialize((self.out_features,)) self.reset_parameters()
# TODO: PartialLinear - maybe in sparse?

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources