Shortcuts

Source code for torch.xpu.random

# mypy: allow-untyped-defs
from typing import Iterable, List, Union

import torch
from .. import Tensor
from . import _lazy_call, _lazy_init, current_device, device_count


[docs]def get_rng_state(device: Union[int, str, torch.device] = "xpu") -> Tensor: r"""Return the random number generator state of the specified GPU as a ByteTensor. Args: device (torch.device or int, optional): The device to return the RNG state of. Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device). .. warning:: This function eagerly initializes XPU. """ _lazy_init() if isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device("xpu", device) idx = device.index if idx is None: idx = current_device() default_generator = torch.xpu.default_generators[idx] return default_generator.get_state()
[docs]def get_rng_state_all() -> List[Tensor]: r"""Return a list of ByteTensor representing the random number states of all devices.""" results = [] for i in range(device_count()): results.append(get_rng_state(i)) return results
[docs]def set_rng_state( new_state: Tensor, device: Union[int, str, torch.device] = "xpu" ) -> None: r"""Set the random number generator state of the specified GPU. Args: new_state (torch.ByteTensor): The desired state device (torch.device or int, optional): The device to set the RNG state. Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device). """ with torch._C._DisableFuncTorch(): new_state_copy = new_state.clone(memory_format=torch.contiguous_format) if isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device("xpu", device) def cb(): idx = device.index if idx is None: idx = current_device() default_generator = torch.xpu.default_generators[idx] default_generator.set_state(new_state_copy) _lazy_call(cb)
[docs]def set_rng_state_all(new_states: Iterable[Tensor]) -> None: r"""Set the random number generator state of all devices. Args: new_states (Iterable of torch.ByteTensor): The desired state for each device. """ for i, state in enumerate(new_states): set_rng_state(state, i)
[docs]def manual_seed(seed: int) -> None: r"""Set the seed for generating random numbers for the current GPU. It's safe to call this function if XPU is not available; in that case, it is silently ignored. Args: seed (int): The desired seed. .. warning:: If you are working with a multi-GPU model, this function is insufficient to get determinism. To seed all GPUs, use :func:`manual_seed_all`. """ seed = int(seed) def cb(): idx = current_device() default_generator = torch.xpu.default_generators[idx] default_generator.manual_seed(seed) _lazy_call(cb, seed=True)
[docs]def manual_seed_all(seed: int) -> None: r"""Set the seed for generating random numbers on all GPUs. It's safe to call this function if XPU is not available; in that case, it is silently ignored. Args: seed (int): The desired seed. """ seed = int(seed) def cb(): for i in range(device_count()): default_generator = torch.xpu.default_generators[i] default_generator.manual_seed(seed) _lazy_call(cb, seed_all=True)
[docs]def seed() -> None: r"""Set the seed for generating random numbers to a random number for the current GPU. It's safe to call this function if XPU is not available; in that case, it is silently ignored. .. warning:: If you are working with a multi-GPU model, this function will only initialize the seed on one GPU. To initialize all GPUs, use :func:`seed_all`. """ def cb(): idx = current_device() default_generator = torch.xpu.default_generators[idx] default_generator.seed() _lazy_call(cb)
[docs]def seed_all() -> None: r"""Set the seed for generating random numbers to a random number on all GPUs. It's safe to call this function if XPU is not available; in that case, it is silently ignored. """ def cb(): random_seed = 0 seeded = False for i in range(device_count()): default_generator = torch.xpu.default_generators[i] if not seeded: default_generator.seed() random_seed = default_generator.initial_seed() seeded = True else: default_generator.manual_seed(random_seed) _lazy_call(cb)
[docs]def initial_seed() -> int: r"""Return the current random seed of the current GPU. .. warning:: This function eagerly initializes XPU. """ _lazy_init() idx = current_device() default_generator = torch.xpu.default_generators[idx] return default_generator.initial_seed()
__all__ = [ "get_rng_state", "get_rng_state_all", "set_rng_state", "set_rng_state_all", "manual_seed", "manual_seed_all", "seed", "seed_all", "initial_seed", ]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources