Source code for torch.utils.mobile_optimizer
# mypy: allow-untyped-defs
"""This module contains utility method for mobile model optimization and lint."""
import torch
from enum import Enum
from torch._C import _MobileOptimizerType as MobileOptimizerType
from typing import Optional, Set, List, AnyStr
class LintCode(Enum):
BUNDLED_INPUT = 1
REQUIRES_GRAD = 2
DROPOUT = 3
BATCHNORM = 4
[docs]def optimize_for_mobile(
script_module: torch.jit.ScriptModule,
optimization_blocklist: Optional[Set[MobileOptimizerType]] = None,
preserved_methods: Optional[List[AnyStr]] = None,
backend: str = 'CPU') -> torch.jit.RecursiveScriptModule:
"""
Optimize a torch script module for mobile deployment.
Args:
script_module: An instance of torch script module with type of ScriptModule.
optimization_blocklist: A set with type of MobileOptimizerType. When set is not passed,
optimization method will run all the optimizer pass; otherwise, optimizer
method will run the optimization pass that is not included inside optimization_blocklist.
preserved_methods: A list of methods that needed to be preserved when freeze_module pass is invoked
backend: Device type to use for running the result model ('CPU'(default), 'Vulkan' or 'Metal').
Returns:
A new optimized torch script module
"""
if not isinstance(script_module, torch.jit.ScriptModule):
raise TypeError(
f'Got {type(script_module)}, but ScriptModule is expected.')
if optimization_blocklist is None:
optimization_blocklist = set()
if preserved_methods is None:
preserved_methods = []
# Convert potential byte arrays into strings (if there is any) to pass type checking
# Here we use a new name as assigning it back to preserved_methods will invoke
# mypy errors (i.e. List[AnyStr] = List[str])
preserved_methods_str: List[str] = [str(method) for method in preserved_methods]
bundled_inputs_attributes = _get_bundled_inputs_preserved_attributes(script_module, preserved_methods_str)
if all(hasattr(script_module, method) for method in bundled_inputs_attributes):
preserved_methods_str = list(set(preserved_methods_str + bundled_inputs_attributes))
non_exist_methods = []
for method in preserved_methods_str:
if not hasattr(script_module, method):
non_exist_methods.append(method)
if non_exist_methods:
raise AttributeError(
f"The following methods to preserve do not exist in script_module: {', '.join(non_exist_methods)}")
backend = backend.lower()
if backend == 'cpu':
optimized_cpp_module = torch._C._jit_pass_optimize_for_mobile(
script_module._c,
optimization_blocklist,
preserved_methods_str)
elif backend == 'vulkan':
optimized_cpp_module = torch._C._jit_pass_vulkan_optimize_for_mobile(
script_module._c,
optimization_blocklist,
preserved_methods_str)
elif backend == 'metal':
optimized_cpp_module = torch._C._jit_pass_metal_optimize_for_mobile(script_module._c, preserved_methods_str)
else:
raise TypeError("Unknown backend, must be one of 'CPU', 'Vulkan' or 'Metal'")
return torch.jit._recursive.wrap_cpp_module(optimized_cpp_module)
def generate_mobile_module_lints(script_module: torch.jit.ScriptModule):
"""
Generate a list of lints for a given torch script module.
Args:
script_module: An instance of torch script module with type of ScriptModule.
Returns:
lint_map: A list of dictionary that contains modules lints
"""
if not isinstance(script_module, torch.jit.ScriptModule):
raise TypeError(
f'Got {type(script_module)}, but ScriptModule is expected.')
lint_list = []
if not hasattr(script_module, "_generate_bundled_inputs_for_forward"):
lint_list.append({"name": LintCode.BUNDLED_INPUT.name, "message": "No bundled input for forward, please add bundled inputs "
"before saving the module using torch.utils.bundled_inputs.augment_model_with_bundled_inputs."})
for name, param in script_module.named_parameters():
if param.requires_grad:
lint_list.append({"name": LintCode.REQUIRES_GRAD.name, "message": f"Param {name} requires grad, "
"please set torch.no_grad() to reduce memory usage and improve computation speed during "
"inference phase."})
op_names = torch.jit.export_opnames(script_module)
for op_name in op_names:
if "dropout" in op_name:
lint_list.append({"name": LintCode.DROPOUT.name,
"message": f"Operator {op_name} exists, remember to call eval() before "
"saving the module.and call torch.utils.mobile_optimizer.optimize_for_mobile to drop dropout "
"operator."})
if "batch_norm" in op_name:
lint_list.append({"name": LintCode.BATCHNORM.name,
"message": f"Operator {op_name} exists, remember to call eval() before "
"saving the module and call torch.utils.mobile_optimizer.optimize_for_mobile to drop batch_norm "
"operator."})
return lint_list
def _get_bundled_inputs_preserved_attributes(script_module: torch.jit.ScriptModule, preserved_methods: List[str]) -> List[str]:
bundled_inputs_attributes = []
# Has bundled inputs for forward
if hasattr(script_module, 'get_all_bundled_inputs'):
bundled_inputs_attributes.append('get_all_bundled_inputs')
bundled_inputs_attributes.append('get_num_bundled_inputs')
# Bundled inputs in module after the change that introduced bundled inputs for multiple functions
if hasattr(script_module, 'get_bundled_inputs_functions_and_info'):
bundled_inputs_attributes.append('get_bundled_inputs_functions_and_info')
all_info = script_module.get_bundled_inputs_functions_and_info()
for function_name in all_info:
if function_name not in preserved_methods:
bundled_inputs_attributes.append(function_name)
bundled_inputs_attributes.append("get_all_bundled_inputs_for_" + function_name)
bundled_inputs_attributes.append("_bundled_inputs_deflated_" + function_name)
return bundled_inputs_attributes