Source code for torch.jit._async
# mypy: allow-untyped-defs
"""Async API.
This module contains the API for parallelism in TorchScript, notably:
* torch.jit.fork
* torch.jit.wait
This is not intended to be imported directly; please use the exposed
functionalities in `torch.jit`.
"""
import torch
from torch._jit_internal import Future
from torch.jit._builtins import _register_builtin
from torch.utils import set_module
set_module(Future, "torch.jit")
[docs]def fork(func, *args, **kwargs):
r"""
Create an asynchronous task executing `func` and a reference to the value of the result of this execution.
`fork` will return immediately, so the return value of `func` may not have been computed yet. To force completion
of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked
with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily
nested, and may be invoked with positional and keyword arguments.
Asynchronous execution will only occur when run in TorchScript. If run in pure python,
`fork` will not execute in parallel. `fork` will also not execute in parallel when invoked
while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph.
.. warning::
`fork` tasks will execute non-deterministically. We recommend only spawning
parallel fork tasks for pure functions that do not modify their inputs,
module attributes, or global state.
Args:
func (callable or torch.nn.Module): A Python function or `torch.nn.Module`
that will be invoked. If executed in TorchScript, it will execute asynchronously,
otherwise it will not. Traced invocations of fork will be captured in the IR.
``*args``, ``**kwargs``: arguments to invoke `func` with.
Returns:
`torch.jit.Future[T]`: a reference to the execution of `func`. The value `T`
can only be accessed by forcing completion of `func` through `torch.jit.wait`.
Example (fork a free function):
.. code-block:: python
import torch
from torch import Tensor
def foo(a : Tensor, b : int) -> Tensor:
return a + b
def bar(a):
fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2)
return torch.jit.wait(fut)
script_bar = torch.jit.script(bar)
input = torch.tensor(2)
# only the scripted version executes asynchronously
assert script_bar(input) == bar(input)
# trace is not run asynchronously, but fork is captured in IR
graph = torch.jit.trace(bar, (input,)).graph
assert "fork" in str(graph)
Example (fork a module method):
.. code-block:: python
import torch
from torch import Tensor
class AddMod(torch.nn.Module):
def forward(self, a: Tensor, b : int):
return a + b
class Mod(torch.nn.Module):
def __init__(self):
super(self).__init__()
self.mod = AddMod()
def forward(self, input):
fut = torch.jit.fork(self.mod, a, b=2)
return torch.jit.wait(fut)
input = torch.tensor(2)
mod = Mod()
assert mod(input) == torch.jit.script(mod).forward(input)
"""
return torch._C.fork(func, *args, **kwargs)
[docs]def wait(future):
r"""
Force completion of a `torch.jit.Future[T]` asynchronous task, returning the result of the task.
See :func:`~fork` for docs and examples.
Args:
future (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork`
Returns:
`T`: the return value of the completed task
"""
return torch._C.wait(future)
_register_builtin(wait, "aten::wait")