Source code for torch.distributions.one_hot_categorical
# mypy: allow-untyped-defs
import torch
from torch.distributions import constraints
from torch.distributions.categorical import Categorical
from torch.distributions.distribution import Distribution
__all__ = ["OneHotCategorical", "OneHotCategoricalStraightThrough"]
[docs]class OneHotCategorical(Distribution):
r"""
Creates a one-hot categorical distribution parameterized by :attr:`probs` or
:attr:`logits`.
Samples are one-hot coded vectors of size ``probs.size(-1)``.
.. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
will return this normalized value.
The `logits` argument will be interpreted as unnormalized log probabilities
and can therefore be any real number. It will likewise be normalized so that
the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
will return this normalized value.
See also: :func:`torch.distributions.Categorical` for specifications of
:attr:`probs` and :attr:`logits`.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
>>> m.sample() # equal probability of 0, 1, 2, 3
tensor([ 0., 0., 0., 1.])
Args:
probs (Tensor): event probabilities
logits (Tensor): event log probabilities (unnormalized)
"""
arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
support = constraints.one_hot
has_enumerate_support = True
def __init__(self, probs=None, logits=None, validate_args=None):
self._categorical = Categorical(probs, logits)
batch_shape = self._categorical.batch_shape
event_shape = self._categorical.param_shape[-1:]
super().__init__(batch_shape, event_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(OneHotCategorical, _instance)
batch_shape = torch.Size(batch_shape)
new._categorical = self._categorical.expand(batch_shape)
super(OneHotCategorical, new).__init__(
batch_shape, self.event_shape, validate_args=False
)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._categorical._new(*args, **kwargs)
@property
def _param(self):
return self._categorical._param
@property
def probs(self):
return self._categorical.probs
@property
def logits(self):
return self._categorical.logits
@property
def mean(self):
return self._categorical.probs
@property
def mode(self):
probs = self._categorical.probs
mode = probs.argmax(axis=-1)
return torch.nn.functional.one_hot(mode, num_classes=probs.shape[-1]).to(probs)
@property
def variance(self):
return self._categorical.probs * (1 - self._categorical.probs)
@property
def param_shape(self):
return self._categorical.param_shape
[docs] def sample(self, sample_shape=torch.Size()):
sample_shape = torch.Size(sample_shape)
probs = self._categorical.probs
num_events = self._categorical._num_events
indices = self._categorical.sample(sample_shape)
return torch.nn.functional.one_hot(indices, num_events).to(probs)
[docs] def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
indices = value.max(-1)[1]
return self._categorical.log_prob(indices)
[docs] def enumerate_support(self, expand=True):
n = self.event_shape[0]
values = torch.eye(n, dtype=self._param.dtype, device=self._param.device)
values = values.view((n,) + (1,) * len(self.batch_shape) + (n,))
if expand:
values = values.expand((n,) + self.batch_shape + (n,))
return values
class OneHotCategoricalStraightThrough(OneHotCategorical):
r"""
Creates a reparameterizable :class:`OneHotCategorical` distribution based on the straight-
through gradient estimator from [1].
[1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
(Bengio et al., 2013)
"""
has_rsample = True
def rsample(self, sample_shape=torch.Size()):
samples = self.sample(sample_shape)
probs = self._categorical.probs # cached via @lazy_property
return samples + (probs - probs.detach())