Shortcuts

Source code for torch.ao.quantization.backend_config.backend_config

# mypy: allow-untyped-defs
from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Type, Union, TYPE_CHECKING

import torch
from enum import Enum

if TYPE_CHECKING:
    from torch.ao.quantization.utils import Pattern


__all__ = [
    "BackendConfig",
    "BackendPatternConfig",
    "DTypeConfig",
    "DTypeWithConstraints",
    "ObservationType",
]


# DTypeConfig dict keys
INPUT_DTYPE_DICT_KEY = "input_dtype"
OUTPUT_DTYPE_DICT_KEY = "output_dtype"
WEIGHT_DTYPE_DICT_KEY = "weight_dtype"
BIAS_DTYPE_DICT_KEY = "bias_dtype"
IS_DYNAMIC_DICT_KEY = "is_dynamic"

# BackendConfig dict keys
NAME_DICT_KEY = "name"
CONFIGS_DICT_KEY = "configs"

# BackendPatternConfig dict keys
PATTERN_DICT_KEY = "pattern"
PATTERN_COMPLEX_FORMAT_DICT_KEY = "pattern_complex_format"
OBSERVATION_TYPE_DICT_KEY = "observation_type"
DTYPE_CONFIGS_DICT_KEY = "dtype_configs"
ROOT_MODULE_DICT_KEY = "root_module"
QAT_MODULE_DICT_KEY = "qat_module"
REFERENCE_QUANTIZED_MODULE_DICT_KEY = "reference_quantized_module_for_root"
FUSED_MODULE_DICT_KEY = "fused_module"
FUSER_METHOD_DICT_KEY = "fuser_method"
ROOT_NODE_GETTER_DICT_KEY = "root_node_getter"
EXTRA_INPUTS_GETTER_DICT_KEY = "extra_inputs_getter"
NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY = "num_tensor_args_to_observation_type"
INPUT_TYPE_TO_INDEX_DICT_KEY = "input_type_to_index"


# TODO: maybe rename this to something that's not related to observer
# e.g. QParamsType
[docs]class ObservationType(Enum): """ An enum that represents different ways of how an operator/operator pattern should be observed """ OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT = 0 """this means input and output are observed with different observers, based on qconfig.activation example: conv, linear, softmax """ OUTPUT_SHARE_OBSERVER_WITH_INPUT = 1 """this means the output will use the same observer instance as input, based on qconfig.activation example: torch.cat, maxpool """ INPUT_OUTPUT_NOT_OBSERVED = 2 """this means the input and output are never observed example: x.shape, x.size """
[docs]@dataclass class DTypeWithConstraints: """ Config for specifying additional constraints for a given dtype, such as quantization value ranges, scale value ranges, and fixed quantization params, to be used in :class:`~torch.ao.quantization.backend_config.DTypeConfig`. The constraints currently supported are: * `quant_min_lower_bound` and `quant_max_upper_bound`: Lower and upper bounds for the minimum and maximum quantized values respectively. If the QConfig's `quant_min` and `quant_max` fall outside this range, then the QConfig will be ignored. * `scale_min_lower_bound` and `scale_max_upper_bound`: Lower and upper bounds for the minimum and maximum scale values respectively. If the QConfig's minimum scale value (currently exposed as `eps`) falls below the lower bound, then the QConfig will be ignored. Note that the upper bound is currently not enforced. * `scale_exact_match` and `zero_point_exact_match`: Exact match requirements for scale and zero point, to be used for operators with fixed quantization parameters such as sigmoid and tanh. If the observer specified in the QConfig is neither `FixedQParamsObserver` nor `FixedQParamsFakeQuantize`, or if the quantization parameters don't match, then the QConfig will be ignored. """ dtype: Optional[torch.dtype] = None quant_min_lower_bound: Union[int, float, None] = None quant_max_upper_bound: Union[int, float, None] = None scale_min_lower_bound: Union[int, float, None] = None scale_max_upper_bound: Union[int, float, None] = None scale_exact_match: Optional[float] = None zero_point_exact_match: Optional[int] = None
[docs]@dataclass class DTypeConfig: """ Config object that specifies the supported data types passed as arguments to quantize ops in the reference model spec, for input and output activations, weights, and biases. For example, consider the following reference model: quant1 - [dequant1 - fp32_linear - quant2] - dequant2 The pattern in the square brackets refers to the reference pattern of statically quantized linear. Setting the input dtype as `torch.quint8` in the DTypeConfig means we pass in `torch.quint8` as the dtype argument to the first quantize op (quant1). Similarly, setting the output dtype as `torch.quint8` means we pass in `torch.quint8` as the dtype argument to the second quantize op (quant2). Note that the dtype here does not refer to the interface dtypes of the op. For example, the "input dtype" here is not the dtype of the input tensor passed to the quantized linear op. Though it can still be the same as the interface dtype, this is not always the case, e.g. the interface dtype is fp32 in dynamic quantization but the "input dtype" specified in the DTypeConfig would still be quint8. The semantics of dtypes here are the same as the semantics of the dtypes specified in the observers. These dtypes are matched against the ones specified in the user's QConfig. If there is a match, and the QConfig satisfies the constraints specified in the DTypeConfig (if any), then we will quantize the given pattern using this DTypeConfig. Otherwise, the QConfig is ignored and the pattern will not be quantized. Example usage:: >>> # xdoctest: +SKIP(failing) >>> dtype_config1 = DTypeConfig( ... input_dtype=torch.quint8, ... output_dtype=torch.quint8, ... weight_dtype=torch.qint8, ... bias_dtype=torch.float) >>> dtype_config2 = DTypeConfig( ... input_dtype=DTypeWithConstraints( ... dtype=torch.quint8, ... quant_min_lower_bound=0, ... quant_max_upper_bound=255, ... ), ... output_dtype=DTypeWithConstraints( ... dtype=torch.quint8, ... quant_min_lower_bound=0, ... quant_max_upper_bound=255, ... ), ... weight_dtype=DTypeWithConstraints( ... dtype=torch.qint8, ... quant_min_lower_bound=-128, ... quant_max_upper_bound=127, ... ), ... bias_dtype=torch.float) >>> dtype_config1.input_dtype torch.quint8 >>> dtype_config2.input_dtype torch.quint8 >>> dtype_config2.input_dtype_with_constraints DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, \ scale_min_lower_bound=None, scale_max_upper_bound=None) """ input_dtype_with_constraints: DTypeWithConstraints output_dtype_with_constraints: DTypeWithConstraints weight_dtype_with_constraints: DTypeWithConstraints bias_dtype: Optional[torch.dtype] is_dynamic: Optional[bool] def __init__( self, input_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None, output_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None, weight_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None, bias_dtype: Optional[torch.dtype] = None, is_dynamic: Optional[bool] = None, ): if isinstance(input_dtype, DTypeWithConstraints): self.input_dtype_with_constraints = input_dtype else: self.input_dtype_with_constraints = DTypeWithConstraints(dtype=input_dtype) if isinstance(output_dtype, DTypeWithConstraints): self.output_dtype_with_constraints = output_dtype else: self.output_dtype_with_constraints = DTypeWithConstraints(dtype=output_dtype) if isinstance(weight_dtype, DTypeWithConstraints): self.weight_dtype_with_constraints = weight_dtype else: self.weight_dtype_with_constraints = DTypeWithConstraints(dtype=weight_dtype) self.bias_dtype = bias_dtype self.is_dynamic = is_dynamic @property def input_dtype(self) -> Optional[torch.dtype]: return self.input_dtype_with_constraints.dtype @property def output_dtype(self) -> Optional[torch.dtype]: return self.output_dtype_with_constraints.dtype @property def weight_dtype(self) -> Optional[torch.dtype]: return self.weight_dtype_with_constraints.dtype
[docs] @classmethod def from_dict(cls, dtype_config_dict: Dict[str, Any]) -> DTypeConfig: """ Create a ``DTypeConfig`` from a dictionary with the following items (all optional): "input_dtype": torch.dtype or ``DTypeWithConstraints`` "output_dtype": torch.dtype or ``DTypeWithConstraints`` "weight_dtype": torch.dtype or ``DTypeWithConstraints`` "bias_type": torch.dtype "is_dynamic": bool """ input_dtype = dtype_config_dict.get(INPUT_DTYPE_DICT_KEY, None) if input_dtype is not None and not isinstance(input_dtype, (torch.dtype, DTypeWithConstraints)): raise ValueError("Expected input_dtype to be a torch.dtype or DTypeWithConstraints") output_dtype = dtype_config_dict.get(OUTPUT_DTYPE_DICT_KEY, None) if output_dtype is not None and not isinstance(output_dtype, (torch.dtype, DTypeWithConstraints)): raise ValueError("Expected output_dtype to be a torch.dtype or DTypeWithConstraints") weight_dtype = dtype_config_dict.get(WEIGHT_DTYPE_DICT_KEY, None) if weight_dtype is not None and not isinstance(weight_dtype, (torch.dtype, DTypeWithConstraints)): raise ValueError("Expected weight_dtype to be a torch.dtype or DTypeWithConstraints") bias_dtype = dtype_config_dict.get(BIAS_DTYPE_DICT_KEY, None) is_dynamic = dtype_config_dict.get(IS_DYNAMIC_DICT_KEY, None) return cls(input_dtype, output_dtype, weight_dtype, bias_dtype, is_dynamic)
[docs] def to_dict(self) -> Dict[str, Any]: """ Convert this ``DTypeConfig`` to a dictionary with the items described in :func:`~torch.ao.quantization.backend_config.DTypeConfig.from_dict`. """ dtype_config_dict: Dict[str, Any] = {} if self.input_dtype is not None: dtype_config_dict[INPUT_DTYPE_DICT_KEY] = self.input_dtype_with_constraints if self.output_dtype is not None: dtype_config_dict[OUTPUT_DTYPE_DICT_KEY] = self.output_dtype_with_constraints if self.weight_dtype is not None: dtype_config_dict[WEIGHT_DTYPE_DICT_KEY] = self.weight_dtype_with_constraints if self.bias_dtype is not None: dtype_config_dict[BIAS_DTYPE_DICT_KEY] = self.bias_dtype if self.is_dynamic is not None: dtype_config_dict[IS_DYNAMIC_DICT_KEY] = self.is_dynamic return dtype_config_dict
[docs]class BackendConfig: # TODO: refer to NativeBackendConfig once that is implemented """Config that defines the set of patterns that can be quantized on a given backend, and how reference quantized models can be produced from these patterns. A pattern in this context refers to a module, a functional, an operator, or a directed acyclic graph of the above. Each pattern supported on the target backend can be individually configured through :class:`~torch.ao.quantization.backend_config.BackendPatternConfig` in terms of: (1) The supported input/output activation, weight, and bias data types (2) How observers and quant/dequant ops are inserted in order to construct the reference pattern, and (3) (Optionally) Fusion, QAT, and reference module mappings. The format of the patterns is described in: https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md Example usage:: import torch from torch.ao.quantization.backend_config import ( BackendConfig, BackendPatternConfig, DTypeConfig, ObservationType, ) weighted_int8_dtype_config = DTypeConfig( input_dtype=torch.quint8, output_dtype=torch.quint8, weight_dtype=torch.qint8, bias_dtype=torch.float) def fuse_conv2d_relu(is_qat, conv, relu): return torch.ao.nn.intrinsic.ConvReLU2d(conv, relu) # For quantizing Linear linear_config = BackendPatternConfig(torch.nn.Linear) \ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \ .add_dtype_config(weighted_int8_dtype_config) \ .set_root_module(torch.nn.Linear) \ .set_qat_module(torch.ao.nn.qat.Linear) \ .set_reference_quantized_module(torch.ao.nn.quantized.reference.Linear) # For fusing Conv2d + ReLU into ConvReLU2d conv_relu_config = BackendPatternConfig((torch.nn.Conv2d, torch.nn.ReLU)) \ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \ .add_dtype_config(weighted_int8_dtype_config) \ .set_fused_module(torch.ao.nn.intrinsic.ConvReLU2d) \ .set_fuser_method(fuse_conv2d_relu) # For quantizing ConvReLU2d fused_conv_relu_config = BackendPatternConfig(torch.ao.nn.intrinsic.ConvReLU2d) \ .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \ .add_dtype_config(weighted_int8_dtype_config) \ .set_root_module(torch.nn.Conv2d) \ .set_qat_module(torch.ao.nn.intrinsic.qat.ConvReLU2d) \ .set_reference_quantized_module(torch.ao.nn.quantized.reference.Conv2d) backend_config = BackendConfig("my_backend") \ .set_backend_pattern_config(linear_config) \ .set_backend_pattern_config(conv_relu_config) \ .set_backend_pattern_config(fused_conv_relu_config) """ def __init__(self, name: str = ""): self.name = name # Store all BackendPatternConfigs in a map to handle duplicates # Note: the key in this map uses the complex reversed tuple format. # This is intended only for internal use; users who wish to access # the original patterns should go through `self.configs` instead. self._pattern_complex_format_to_config: Dict[Pattern, BackendPatternConfig] = {} def __repr__(self): return f"BackendConfig({self.__dict__})"
[docs] def set_name(self, name: str) -> BackendConfig: """ Set the name of the target backend. """ self.name = name return self
[docs] def set_backend_pattern_config(self, config: BackendPatternConfig) -> BackendConfig: """ Set the config for an pattern that can be run on the target backend. This overrides any existing config for the given pattern. """ # Avoid circular dependencies pattern_complex_format = torch.ao.quantization.backend_config.utils \ ._get_pattern_in_reversed_nested_tuple_format(config) # type: ignore[attr-defined] self._pattern_complex_format_to_config[pattern_complex_format] = config return self
[docs] def set_backend_pattern_configs(self, configs: List[BackendPatternConfig]) -> BackendConfig: """ Set the configs for patterns that can be run on the target backend. This overrides any existing config for a given pattern if it was previously registered already. """ for conf in configs: self.set_backend_pattern_config(conf) return self
@property def configs(self) -> List[BackendPatternConfig]: """ Return a copy of the list of configs set in this `BackendConfig`. """ return list(self._pattern_complex_format_to_config.values())
[docs] @classmethod def from_dict(cls, backend_config_dict: Dict[str, Any]) -> BackendConfig: """ Create a ``BackendConfig`` from a dictionary with the following items: "name": the name of the target backend "configs": a list of dictionaries that each represents a `BackendPatternConfig` """ conf = cls(backend_config_dict.get(NAME_DICT_KEY, "")) for d in backend_config_dict.get(CONFIGS_DICT_KEY, []): if isinstance(d, BackendPatternConfig): conf.set_backend_pattern_config(d) elif isinstance(d, Dict): conf.set_backend_pattern_config(BackendPatternConfig.from_dict(d)) else: raise ValueError(f"Expected backend_config_dict['{CONFIGS_DICT_KEY}'] to be a dictionary") return conf
[docs] def to_dict(self) -> Dict[str, Any]: """ Convert this ``BackendConfig`` to a dictionary with the items described in :func:`~torch.ao.quantization.backend_config.BackendConfig.from_dict`. """ return { NAME_DICT_KEY: self.name, CONFIGS_DICT_KEY: [c.to_dict() for c in self.configs], }
[docs]class BackendPatternConfig: """ Config object that specifies quantization behavior for a given operator pattern. For a detailed example usage, see :class:`~torch.ao.quantization.backend_config.BackendConfig`. """ def __init__(self, pattern: Optional[Pattern] = None): self.pattern: Optional[Pattern] = pattern self.observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT self.dtype_configs: List[DTypeConfig] = [] self.root_module: Optional[Type[torch.nn.Module]] = None self.qat_module: Optional[Type[torch.nn.Module]] = None self.reference_quantized_module: Optional[Type[torch.nn.Module]] = None self.fused_module: Optional[Type[torch.nn.Module]] = None self.fuser_method: Optional[Callable] = None # Temporary/internal configs self._root_node_getter: Optional[Callable] = None self._extra_inputs_getter: Optional[Callable] = None self._num_tensor_args_to_observation_type: Dict[int, ObservationType] = {} self._input_type_to_index: Dict[str, int] = {} self._pattern_complex_format: Optional[Pattern] = None def __repr__(self): dict_nonempty = { k: v for k, v in self.__dict__.items() if ( (not isinstance(v, (list, dict)) and v is not None) or (isinstance(v, (list, dict)) and len(v) > 0) ) } return f"BackendPatternConfig({dict_nonempty})"
[docs] def set_pattern(self, pattern: Pattern) -> BackendPatternConfig: """ Set the pattern to configure. The pattern can be a float module, functional operator, pytorch operator, or a tuple combination of the above. Tuple patterns are treated as sequential patterns, and currently only tuples of 2 or 3 elements are supported. """ if self._pattern_complex_format is not None: raise ValueError("Only one of 'pattern' or 'pattern_complex_format' can be set") self.pattern = pattern return self
[docs] def set_observation_type(self, observation_type: ObservationType) -> BackendPatternConfig: """ Set how observers should be inserted in the graph for this pattern. Observation type here refers to how observers (or quant-dequant ops) will be placed in the graph. This is used to produce the desired reference patterns understood by the backend. Weighted ops such as linear and conv require different observers (or quantization parameters passed to quantize ops in the reference model) for the input and the output. There are two observation types: `OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT` (default): the output observer instance will be different from the input. This is the most common observation type. `OUTPUT_SHARE_OBSERVER_WITH_INPUT`: the output observer instance will be the same as the input. This is useful for operators like `cat`. Note: This will be renamed in the near future, since we will soon insert QuantDeQuantStubs with observers (and fake quantizes) attached instead of observers themselves. """ self.observation_type = observation_type return self
[docs] def add_dtype_config(self, dtype_config: DTypeConfig) -> BackendPatternConfig: """ Add a set of supported data types passed as arguments to quantize ops in the reference model spec. """ self.dtype_configs.append(dtype_config) return self
[docs] def set_dtype_configs(self, dtype_configs: List[DTypeConfig]) -> BackendPatternConfig: """ Set the supported data types passed as arguments to quantize ops in the reference model spec, overriding all previously registered data types. """ self.dtype_configs = dtype_configs return self
[docs] def set_root_module(self, root_module: Type[torch.nn.Module]) -> BackendPatternConfig: """ Set the module that represents the root for this pattern. When we construct the reference quantized model during the convert phase, the root modules (e.g. torch.nn.Linear for torch.ao.nn.intrinsic.LinearReLU) will be swapped to the corresponding reference quantized modules (e.g. torch.ao.nn.reference.quantized.Linear). This allows custom backends to specify custom reference quantized module implementations to match the numerics of their lowered operators. Since this is a one-to-one mapping, both the root module and the reference quantized module must be specified in the same BackendPatternConfig in order for the conversion to take place. """ self.root_module = root_module return self
[docs] def set_qat_module(self, qat_module: Type[torch.nn.Module]) -> BackendPatternConfig: """ Set the module that represents the QAT implementation for this pattern. """ self.qat_module = qat_module return self
[docs] def set_reference_quantized_module(self, reference_quantized_module: Type[torch.nn.Module]) -> BackendPatternConfig: """ Set the module that represents the reference quantized implementation for this pattern's root module. For more detail, see :func:`~torch.ao.quantization.backend_config.BackendPatternConfig.set_root_module`. """ self.reference_quantized_module = reference_quantized_module return self
[docs] def set_fused_module(self, fused_module: Type[torch.nn.Module]) -> BackendPatternConfig: """ Set the module that represents the fused implementation for this pattern. """ self.fused_module = fused_module return self
[docs] def set_fuser_method(self, fuser_method: Callable) -> BackendPatternConfig: """ Set the function that specifies how to fuse this BackendPatternConfig's pattern. The first argument of this function should be `is_qat`, and the rest of the arguments should be the items in the tuple pattern. The return value of this function should be the resulting fused module. For example, the fuser method for the pattern `(torch.nn.Linear, torch.nn.ReLU)` can be: def fuse_linear_relu(is_qat, linear, relu): return torch.ao.nn.intrinsic.LinearReLU(linear, relu) For a more complicated example, see https://gist.github.com/jerryzh168/8bea7180a8ba3c279f2c9b050f2a69a6. """ self.fuser_method = fuser_method return self
def _set_root_node_getter(self, root_node_getter: Callable) -> BackendPatternConfig: self._root_node_getter = root_node_getter return self def _set_extra_inputs_getter(self, extra_inputs_getter: Callable) -> BackendPatternConfig: self._extra_inputs_getter = extra_inputs_getter return self def _set_num_tensor_args_to_observation_type( self, num_tensor_args_to_observation_type: Dict[int, ObservationType]) -> BackendPatternConfig: self._num_tensor_args_to_observation_type = num_tensor_args_to_observation_type return self def _set_input_type_to_index(self, input_type_to_index: Dict[str, int]) -> BackendPatternConfig: self._input_type_to_index = input_type_to_index return self def _set_pattern_complex_format(self, pattern: Pattern) -> BackendPatternConfig: """ Set the pattern to configure, using the reversed nested tuple format. See the BackendConfig README for more detail: https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md#advanced-pattern-specification """ if self.pattern is not None: raise ValueError("Only one of 'pattern' or 'pattern_complex_format' can be set") self._pattern_complex_format = pattern return self
[docs] @classmethod def from_dict(cls, backend_pattern_config_dict: Dict[str, Any]) -> BackendPatternConfig: """ Create a ``BackendPatternConfig`` from a dictionary with the following items: "pattern": the pattern being configured "observation_type": the :class:`~torch.ao.quantization.backend_config.ObservationType` that specifies how observers should be inserted for this pattern "dtype_configs": a list of dictionaries that represents :class:`~torch.ao.quantization.backend_config.DTypeConfig` s "root_module": a :class:`torch.nn.Module` that represents the root for this pattern "qat_module": a :class:`torch.nn.Module` that represents the QAT implementation for this pattern "reference_quantized_module": a :class:`torch.nn.Module` that represents the reference quantized implementation for this pattern's root module. "fused_module": a :class:`torch.nn.Module` that represents the fused implementation for this pattern "fuser_method": a function that specifies how to fuse the pattern for this pattern "pattern_complex_format": the pattern specified in the reversed nested tuple format (deprecated) """ def _get_dtype_config(obj: Any) -> DTypeConfig: """ Convert the given object into a ``DTypeConfig`` if possible, else throw an exception. """ if isinstance(obj, DTypeConfig): return obj if isinstance(obj, Dict): return DTypeConfig.from_dict(obj) raise ValueError( f"Expected a list of DTypeConfigs in " f"backend_pattern_config_dict[\"{DTYPE_CONFIGS_DICT_KEY}\"], got '{type(obj)}'" ) conf = cls() if PATTERN_DICT_KEY in backend_pattern_config_dict: conf.set_pattern(backend_pattern_config_dict[PATTERN_DICT_KEY]) if OBSERVATION_TYPE_DICT_KEY in backend_pattern_config_dict: conf.set_observation_type(backend_pattern_config_dict[OBSERVATION_TYPE_DICT_KEY]) for d in backend_pattern_config_dict.get(DTYPE_CONFIGS_DICT_KEY, []): conf.add_dtype_config(_get_dtype_config(d)) conf.set_root_module(backend_pattern_config_dict.get(ROOT_MODULE_DICT_KEY, None)) conf.set_qat_module(backend_pattern_config_dict.get(QAT_MODULE_DICT_KEY, None)) conf.set_reference_quantized_module(backend_pattern_config_dict.get(REFERENCE_QUANTIZED_MODULE_DICT_KEY, None)) conf.set_fused_module(backend_pattern_config_dict.get(FUSED_MODULE_DICT_KEY, None)) conf.set_fuser_method(backend_pattern_config_dict.get(FUSER_METHOD_DICT_KEY, None)) conf._set_root_node_getter(backend_pattern_config_dict.get(ROOT_NODE_GETTER_DICT_KEY, None)) conf._set_extra_inputs_getter(backend_pattern_config_dict.get(EXTRA_INPUTS_GETTER_DICT_KEY, None)) conf._set_num_tensor_args_to_observation_type( backend_pattern_config_dict.get(NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY, {})) conf._set_input_type_to_index(backend_pattern_config_dict.get(INPUT_TYPE_TO_INDEX_DICT_KEY, {})) if PATTERN_COMPLEX_FORMAT_DICT_KEY in backend_pattern_config_dict: conf._set_pattern_complex_format(backend_pattern_config_dict[PATTERN_COMPLEX_FORMAT_DICT_KEY]) return conf
[docs] def to_dict(self) -> Dict[str, Any]: """ Convert this ``BackendPatternConfig`` to a dictionary with the items described in :func:`~torch.ao.quantization.backend_config.BackendPatternConfig.from_dict`. """ backend_pattern_config_dict: Dict[str, Any] = { OBSERVATION_TYPE_DICT_KEY: self.observation_type, DTYPE_CONFIGS_DICT_KEY: [c.to_dict() for c in self.dtype_configs], } if self.pattern is not None: backend_pattern_config_dict[PATTERN_DICT_KEY] = self.pattern if self.root_module is not None: backend_pattern_config_dict[ROOT_MODULE_DICT_KEY] = self.root_module if self.qat_module is not None: backend_pattern_config_dict[QAT_MODULE_DICT_KEY] = self.qat_module if self.reference_quantized_module is not None: backend_pattern_config_dict[REFERENCE_QUANTIZED_MODULE_DICT_KEY] = self.reference_quantized_module if self.fused_module is not None: backend_pattern_config_dict[FUSED_MODULE_DICT_KEY] = self.fused_module if self.fuser_method is not None: backend_pattern_config_dict[FUSER_METHOD_DICT_KEY] = self.fuser_method if self._root_node_getter is not None: backend_pattern_config_dict[ROOT_NODE_GETTER_DICT_KEY] = self._root_node_getter if self._extra_inputs_getter is not None: backend_pattern_config_dict[EXTRA_INPUTS_GETTER_DICT_KEY] = self._extra_inputs_getter if len(self._num_tensor_args_to_observation_type) > 0: backend_pattern_config_dict[NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY] = self._num_tensor_args_to_observation_type if len(self._input_type_to_index) > 0: backend_pattern_config_dict[INPUT_TYPE_TO_INDEX_DICT_KEY] = self._input_type_to_index if self._pattern_complex_format is not None: backend_pattern_config_dict[PATTERN_COMPLEX_FORMAT_DICT_KEY] = self._pattern_complex_format return backend_pattern_config_dict

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources