Shortcuts

Source code for torch.ao.ns._numeric_suite_fx

# mypy: allow-untyped-defs
"""
This module contains tooling to compare weights and activations
across models. Example usage::

    import copy
    import torch
    import torch.ao.quantization.quantize_fx as quantize_fx
    import torch.ao.ns._numeric_suite_fx as ns

    m = torch.nn.Sequential(torch.nn.Conv2d(1, 1, 1)).eval()
    mp = quantize_fx.prepare_fx(m, {'': torch.ao.quantization.default_qconfig})
    # We convert a copy because we need the original prepared model
    # to be available for comparisons, and `quantize_fx.convert_fx` is inplace.
    mq = quantize_fx.convert_fx(copy.deepcopy(mp))

    #
    # Comparing weights
    #

    # extract weight pairs
    weight_comparison = ns.extract_weights('a', mp, 'b', mq)

    # add SQNR for each comparison, inplace
    ns.extend_logger_results_with_comparison(
        weight_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
        'sqnr')

    # weight_comparison contains the weights from `mp` and `mq` stored
    # in pairs, and can be used for further analysis.


    #
    # Comparing activations, with error propagation
    #

    # add loggers
    mp_ns, mq_ns = ns.add_loggers(
        'a', copy.deepcopy(mp),
        'b', copy.deepcopy(mq),
        ns.OutputLogger)

    # send an example datum to capture intermediate activations
    datum = torch.randn(1, 1, 1, 1)
    mp_ns(datum)
    mq_ns(datum)

    # extract intermediate activations
    act_comparison = ns.extract_logger_info(
        mp_ns, mq_ns, ns.OutputLogger, 'b')

    # add SQNR for each comparison, inplace
    ns.extend_logger_results_with_comparison(
        act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
        'sqnr')

    # act_comparison contains the activations from `mp_ns` and `mq_ns` stored
    # in pairs, and can be used for further analysis.

    #
    # Comparing activations, without error propagation
    #

    # create shadow model
    mp_shadows_mq = ns.add_shadow_loggers(
        'a', copy.deepcopy(mp),
        'b', copy.deepcopy(mq),
        ns.OutputLogger)

    # send an example datum to capture intermediate activations
    datum = torch.randn(1, 1, 1, 1)
    mp_shadows_mq(datum)

    # extract intermediate activations
    shadow_act_comparison = ns.extract_shadow_logger_info(
        mp_shadows_mq, ns.OutputLogger, 'b')

    # add SQNR for each comparison, inplace
    ns.extend_logger_results_with_comparison(
        shadow_act_comparison, 'a', 'b', torch.ao.ns.fx.utils.compute_sqnr,
        'sqnr')

    # shadow_act_comparison contains the activations from `mp_ns` and `mq_ns` stored
    # in pairs, and can be used for further analysis.

"""

import collections

import torch
import torch.nn as nn
import torch.ao.quantization.quantize_fx as quantize_fx
from torch.fx import GraphModule
from torch.fx.graph import Node
from torch.ao.ns.fx.mappings import (
    get_base_name_to_sets_of_related_ops,
)
from torch.ao.ns.fx.graph_matcher import (
    get_matching_subgraph_pairs,
    get_type_a_related_to_b,
)

from .fx.weight_utils import (
    extract_weight_from_node,
)

from .fx.graph_passes import (
    add_loggers_to_model,
    create_a_shadows_b,
)

from .fx.utils import (
    rekey_logger_info_on_node_name_of_model,
    maybe_add_missing_fqns,
    get_target_type_str,
)

from .fx.ns_types import (
    NSSingleResultValuesType,
    NSResultsType,
    NSNodeTargetType,
)
from torch.ao.quantization.backend_config.utils import get_fusion_pattern_to_root_node_getter
from torch.ao.quantization.backend_config import BackendConfig
from torch.ao.quantization.fx.match_utils import _find_matches
from torch.ao.quantization.fx.graph_module import _get_observed_graph_module_attr
from torch.ao.quantization.fx.qconfig_mapping_utils import _generate_node_name_to_qconfig
from torch.ao.quantization.fx.quantize_handler import _get_pattern_to_quantize_handlers
from torch.ao.quantization import QConfigMapping
from torch.ao.ns.fx.n_shadows_utils import (
    OutputProp,
    _get_dedup_subgraphs,
    SHADOW_WRAPPER_NODE_NAME_PREFIX,
    group_results_by_subgraph,
    create_results_comparison,
    print_n_shadows_summary,
    create_n_transformed_and_logged_copies_of_subgraph,
    create_add_loggers_graph,
    extract_weight_comparison,
)
from torch.ao.ns.fx.qconfig_multi_mapping import QConfigMultiMapping

from typing import Dict, Tuple, Callable, List, Optional, Set, Any, Type, TYPE_CHECKING

if TYPE_CHECKING:
    from torch.ao.quantization.qconfig import QConfigAny

RNNReturnType = Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]

[docs]class OutputLogger(nn.Module): """ Base class for capturing intermediate values. """ stats: List[torch.Tensor] stats_rnn: List[RNNReturnType] # Mark as impure so that calls to it will not be removed during DCE. _is_impure = True def __init__( self, ref_node_name: str, prev_node_name: str, model_name: str, ref_name: str, prev_node_target_type: str, ref_node_target_type: str, results_type: str, index_within_arg: int, index_of_arg: int, fqn: Optional[str], qconfig_str: Optional[str] = '', ): super().__init__() self.stats: List[torch.Tensor] = [] self.stats_rnn: List[RNNReturnType] = [] # name of the node which was responsible for adding this logger # Note: # - if we are logging node outputs, this is the same as prev_node_name # - if we are logging node inputs, this is the name of the node # whose input this logger is logging. # # example, where logger1 is logging input of op1 and logger2 is logging # the output of op1: # # x1 -> logger1 -> op1 -> logger2 -> x2 # # in this example, # - logger1's prev_node_name is x1 and ref_node_name is op1 # - logger2's prev_node_name is op1 and ref_node_name is op1 self.ref_node_name = ref_node_name # name of the node whose output this Logger is capturing self.prev_node_name = prev_node_name # name of the model from which the node originated from self.model_name = model_name # reference name, used to match loggers from separate models # to each other self.ref_name = ref_name # type of the target of the node whose output this logger is logging self.prev_node_target_type = prev_node_target_type # type of the target of the node which was responsible for adding this # logger self.ref_node_target_type = ref_node_target_type # what kind of values are inside of stats self.results_type = results_type # index of this node within the arg of the input/output node # for example, in cat([x1, x2, x3], dim=0), x2 would have index_within_arg == 1 self.index_within_arg = index_within_arg # index of this node within the args of the input/output node # for example, in add(x1, x2), x2 would have index_of_arg == 1 self.index_of_arg = index_of_arg # fully qualified name self.fqn = fqn # if loggers are added before prepare_fx, but we do not want # collect results of calibration, only results after convert_fx # so, we add a flag to control whether this logger collects data self.enabled = True # string representation of qconfig self.qconfig_str = qconfig_str # this can be turned off to reduce memory usage during calibration self.save_activations = True # Note: cannot annotate the type of x because TorchScript does not support # the Union type.
[docs] def forward(self, x): """ """ # blank docblock to make autodoc happy # TODO(future PR): consider designing this better, as the difference # between these two flags is subtle and not obvious. if not self.enabled: return x if not self.save_activations: return x # TODO(future PR): consider refactoring this to better reuse the parent # class if isinstance(x, torch.Tensor): self.stats.append(x.detach()) elif isinstance(x, tuple) and len(x) == 2 and len(x[1]) == 2: new_res = (x[0].detach(), (x[1][0].detach(), x[1][1].detach())) self.stats_rnn.append(new_res) return x
def __repr__(self): clean_dict = { k: v for k, v in self.__dict__.items() # skip nn.Module keys if (k != 'training') and not k.startswith('_') } return f"OutputLogger({clean_dict})"
[docs]class OutputComparisonLogger(OutputLogger): """ Same as OutputLogger, but also requires the original activation in order to calculate the comparison at calibration time """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO(future PR): make the comparison function configurable self.comparison_fn = torch.ao.ns.fx.utils.compute_sqnr self.comparison_fn_name = 'sqnr' # precalculated comparisons of logger output versus reference self.comparisons = [] # precalculated comparisons function
[docs] def forward(self, x, x_ref): """ """ # blank docblock to make autodoc happy if not self.enabled: return x assert isinstance(x, torch.Tensor), 'non-tensor inputs not yet supported' if self.save_activations: # save the activation, for debugging self.stats.append(x.detach()) # save the comparison self.comparisons.append(self.comparison_fn(x, x_ref)) return x
def __repr__(self): clean_dict = { k: v for k, v in self.__dict__.items() # skip nn.Module keys if (k != 'training') and not k.startswith('_') } return f"OutputComparisonLogger({clean_dict})"
[docs]class NSTracer(quantize_fx.QuantizationTracer): """ Just like a regular FX quantization tracer, but treats observers and fake_quantize modules as leaf modules. """
[docs] def is_leaf_module(self, m: torch.nn.Module, module_qualified_name : str) -> bool: """ """ # blank docblock to make autodoc happy if isinstance(m, torch.ao.quantization.ObserverBase): return True elif isinstance(m, torch.ao.quantization.FakeQuantizeBase): return True return super().is_leaf_module(m, module_qualified_name)
def _extract_weights_one_model( model_name: str, model: GraphModule, nodes_and_names_to_instrument: List[Tuple[Node, str]], results: NSResultsType, op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None, ) -> None: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_weights_one_model") for node, ref_name in nodes_and_names_to_instrument: res_type = NSSingleResultValuesType.WEIGHT.value extracted_weight = extract_weight_from_node( node, model, op_to_type_to_weight_extraction_fn) if extracted_weight: if ref_name not in results: results[ref_name] = {res_type: {}} results[ref_name][res_type][model_name] = [extracted_weight] def _extract_weights_impl( model_name_a: str, gm_a: GraphModule, model_name_b: str, gm_b: GraphModule, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None, ) -> NSResultsType: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_weights_impl") matched_subgraph_pairs = get_matching_subgraph_pairs( gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map) # split the subgraph pairs into one data structure for each model nodes_and_names_to_instrument_a: List[Tuple[Node, str]] = [] nodes_and_names_to_instrument_b: List[Tuple[Node, str]] = [] for match_name, match in matched_subgraph_pairs.items(): subgraph_a, subgraph_b = match nodes_and_names_to_instrument_a.append((subgraph_a.base_op_node, match_name)) nodes_and_names_to_instrument_b.append((subgraph_b.base_op_node, match_name)) # populate the results, one model at a time results: NSResultsType = {} _extract_weights_one_model( model_name_a, gm_a, nodes_and_names_to_instrument_a, results, op_to_type_to_weight_extraction_fn) _extract_weights_one_model( model_name_b, gm_b, nodes_and_names_to_instrument_b, results, op_to_type_to_weight_extraction_fn) # fill in missing fqn entries maybe_add_missing_fqns(results) # rekey on names of nodes in gm_b results = rekey_logger_info_on_node_name_of_model(results, model_name_b) return results
[docs]def extract_weights( model_name_a: str, model_a: nn.Module, model_name_b: str, model_b: nn.Module, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, op_to_type_to_weight_extraction_fn: Optional[Dict[str, Dict[Callable, Callable]]] = None, ) -> NSResultsType: """ Extract weights from model A and model B, and return a comparison. Args: model_name_a: string name of model A to use in results model_a: model A model_name_b: string name of model B to use in results model_b: model B base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change unmatchable_types_map: optional override of unmatchable types, subject to change op_to_type_to_weight_extraction_fn: optional override of function which extracts weight from a type, subject to change Return: NSResultsType, containing the weight comparisons """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_weights") if base_name_to_sets_of_related_ops is None: base_name_to_sets_of_related_ops = \ get_base_name_to_sets_of_related_ops() type_a_related_to_b = \ get_type_a_related_to_b(base_name_to_sets_of_related_ops) # TODO(future PR): expose these skipped_module_names: List[str] = [] skipped_module_classes: List[Callable] = [] tracer_a = NSTracer(skipped_module_names, skipped_module_classes) tracer_b = NSTracer(skipped_module_names, skipped_module_classes) gm_a = GraphModule(model_a, tracer_a.trace(model_a)) maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(model_a, 'node_name_to_scope') if maybe_model_a_node_name_to_scope is not None: gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope gm_b = GraphModule(model_b, tracer_b.trace(model_b)) maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(model_b, 'node_name_to_scope') if maybe_model_b_node_name_to_scope is not None: gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope return _extract_weights_impl( model_name_a, gm_a, model_name_b, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map, op_to_type_to_weight_extraction_fn)
def _add_loggers_one_model( model_name: str, model: GraphModule, nodes_and_names_to_instrument_inputs: List[Tuple[Node, str, str]], nodes_and_names_to_instrument_outputs: List[Tuple[Node, str, str]], logger_cls: Callable, ) -> nn.Module: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_one_model") # TODO(future PR): do not observe nodes we do not care # about (both fp32, denylist, etc) node_to_instrument_inputs_to_ref_name: Dict[Node, Tuple[str, str]] = {} node_to_instrument_outputs_to_ref_name: Dict[Node, Tuple[str, str]] = {} for node, ref_name, ref_node_type in nodes_and_names_to_instrument_inputs: node_to_instrument_inputs_to_ref_name[node] = (ref_name, ref_node_type) for node, ref_name, ref_node_type in nodes_and_names_to_instrument_outputs: node_to_instrument_outputs_to_ref_name[node] = (ref_name, ref_node_type) model = add_loggers_to_model( model, node_to_instrument_inputs_to_ref_name, node_to_instrument_outputs_to_ref_name, logger_cls, model_name) return model def _add_loggers_impl( name_a: str, gm_a: GraphModule, name_b: str, gm_b: GraphModule, logger_cls: Callable, should_log_inputs: bool, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> Tuple[nn.Module, nn.Module]: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_loggers_impl") matched_subgraph_pairs = get_matching_subgraph_pairs( gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map) nodes_and_names_to_instrument_inputs_a = [] nodes_and_names_to_instrument_inputs_b = [] nodes_and_names_to_instrument_outputs_a = [] nodes_and_names_to_instrument_outputs_b = [] for match_name, (subgraph_a, subgraph_b) in matched_subgraph_pairs.items(): ref_node_type_a = get_target_type_str(subgraph_a.base_op_node, gm_a) ref_node_type_b = get_target_type_str(subgraph_b.base_op_node, gm_b) # Note: for matching inputs we use start_node, such as observing # the input of linear in linear-relu if should_log_inputs: nodes_and_names_to_instrument_inputs_a.append( (subgraph_a.start_node, match_name, ref_node_type_a)) nodes_and_names_to_instrument_inputs_b.append( (subgraph_b.start_node, match_name, ref_node_type_b)) # Note: for matching activations we always use end_node, # such as observing the output of relu in linear-relu nodes_and_names_to_instrument_outputs_a.append( (subgraph_a.end_node, match_name, ref_node_type_a)) nodes_and_names_to_instrument_outputs_b.append( (subgraph_b.end_node, match_name, ref_node_type_b)) new_model_a = _add_loggers_one_model( name_a, gm_a, nodes_and_names_to_instrument_inputs_a, nodes_and_names_to_instrument_outputs_a, logger_cls) new_model_b = _add_loggers_one_model( name_b, gm_b, nodes_and_names_to_instrument_inputs_b, nodes_and_names_to_instrument_outputs_b, logger_cls) return (new_model_a, new_model_b)
[docs]def add_loggers( name_a: str, model_a: nn.Module, name_b: str, model_b: nn.Module, logger_cls: Callable, should_log_inputs : bool = False, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> Tuple[nn.Module, nn.Module]: """ Instrument model A and model B with loggers. Args: name_a: string name of model A to use in results model_a: model A name_b: string name of model B to use in results model_b: model B logger_cls: class of Logger to use base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change unmatchable_types_map: optional override of unmatchable types, subject to change Return: Returns a tuple of (model_a_with_loggers, model_b_with_loggers). Modifies both models inplace. """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_loggers") # TODO(future PR): expose these skipped_module_names: List[str] = [] skipped_module_classes: List[Callable] = [] tracer_a = NSTracer(skipped_module_names, skipped_module_classes) tracer_b = NSTracer(skipped_module_names, skipped_module_classes) gm_a = GraphModule(model_a, tracer_a.trace(model_a)) maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(model_a, 'node_name_to_scope') if maybe_model_a_node_name_to_scope is not None: gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope gm_b = GraphModule(model_b, tracer_b.trace(model_b)) maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(model_b, 'node_name_to_scope') if maybe_model_b_node_name_to_scope is not None: gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope return _add_loggers_impl( name_a, gm_a, name_b, gm_b, logger_cls, should_log_inputs=should_log_inputs, base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops, unmatchable_types_map=unmatchable_types_map)
def _extract_logger_info_one_model( model: nn.Module, results: NSResultsType, logger_cls: Callable, ) -> None: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._extract_logger_info_one_model") for gm_name, mod in model.named_modules(): # TODO(future PR): better check when scripted is_logger = ( isinstance(mod, logger_cls) # type: ignore[arg-type] or ( isinstance(mod, torch.jit.RecursiveScriptModule) and mod.original_name == 'OutputLogger' ) ) if is_logger: key = mod.ref_name if key not in results: results[key] = {} assert mod.model_name not in results[key], \ f"{mod.model_name} is already present in results" if mod.results_type not in results[key]: results[key][mod.results_type] = {} if mod.model_name not in results[key][mod.results_type]: results[key][mod.results_type][mod.model_name] = [] stats_to_use = mod.stats if len(mod.stats_rnn) > 0: stats_to_use = mod.stats_rnn data = { 'type': mod.results_type, 'values': stats_to_use, 'ref_node_name': mod.ref_node_name, 'ref_node_target_type': mod.ref_node_target_type, 'prev_node_name': mod.prev_node_name, 'prev_node_target_type': mod.prev_node_target_type, 'index_within_arg': mod.index_within_arg, 'index_of_arg': mod.index_of_arg, 'fqn': mod.fqn, 'qconfig_str': mod.qconfig_str, } if hasattr(mod, 'comparisons'): data['comparisons'] = mod.comparisons data['comparison_fn_name'] = mod.comparison_fn_name else: data['comparisons'] = [] data['comparison_fn_name'] = '' results[key][mod.results_type][mod.model_name].append(data) # ensure the list stays sorted results[key][mod.results_type][mod.model_name].sort( key=lambda res: f"{res['index_of_arg']}:{res['index_within_arg']}" ) # TODO(future PR): align on naming # this is equivalent of just the comparison extraction part of `ns.compare_model_outputs`
[docs]def extract_logger_info( model_a: nn.Module, model_b: nn.Module, logger_cls: Callable, model_name_to_use_for_layer_names: str, ) -> NSResultsType: """ Traverse all loggers in `model_a` and `model_b`, and extract the logged information. Args: model_a: model A model_b: model B logger_cls: class of Logger to use model_name_to_use_for_layer_names: string name of model to use for layer names in the output Return: NSResultsType, containing the logged comparisons """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_logger_info") results: NSResultsType = {} for model in (model_a, model_b): _extract_logger_info_one_model(model, results, logger_cls) # fill in missing fqn entries maybe_add_missing_fqns(results) # rekey on the name of model b results = rekey_logger_info_on_node_name_of_model( results, model_name_to_use_for_layer_names) return results
def _add_shadow_loggers_impl( name_a: str, gm_a: GraphModule, name_b: str, gm_b: GraphModule, logger_cls: Callable, should_log_inputs: bool, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> nn.Module: torch._C._log_api_usage_once("quantization_api._numeric_suite_fx._add_shadow_loggers_impl") matched_subgraph_pairs = get_matching_subgraph_pairs( gm_a, gm_b, base_name_to_sets_of_related_ops, unmatchable_types_map) gm_a_shadows_b = create_a_shadows_b( name_a, gm_a, name_b, gm_b, matched_subgraph_pairs, logger_cls, should_log_inputs=should_log_inputs, node_type_to_io_type_map=node_type_to_io_type_map) return gm_a_shadows_b
[docs]def add_shadow_loggers( name_a: str, model_a: nn.Module, name_b: str, model_b: nn.Module, logger_cls: Callable, should_log_inputs: bool = False, base_name_to_sets_of_related_ops: Optional[Dict[str, Set[NSNodeTargetType]]] = None, node_type_to_io_type_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, unmatchable_types_map: Optional[Dict[str, Set[NSNodeTargetType]]] = None, ) -> nn.Module: """ Instrument model A and model B with shadow loggers. Args: name_a: string name of model A to use in results model_a: model A name_b: string name of model B to use in results model_b: model B logger_cls: class of Logger to use should_log_inputs: whether to log inputs base_name_to_sets_of_related_ops: optional override of subgraph base nodes, subject to change unmatchable_types_map: optional override of unmatchable types, subject to change """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.add_shadow_loggers") # TODO(future PR): expose these skipped_module_names: List[str] = [] skipped_module_classes: List[Callable] = [] tracer_a = NSTracer(skipped_module_names, skipped_module_classes) tracer_b = NSTracer(skipped_module_names, skipped_module_classes) gm_a = GraphModule(model_a, tracer_a.trace(model_a)) maybe_model_a_node_name_to_scope = _get_observed_graph_module_attr(model_a, 'node_name_to_scope') if maybe_model_a_node_name_to_scope is not None: gm_a._node_name_to_scope = maybe_model_a_node_name_to_scope gm_b = GraphModule(model_b, tracer_b.trace(model_b)) maybe_model_b_node_name_to_scope = _get_observed_graph_module_attr(model_b, 'node_name_to_scope') if maybe_model_b_node_name_to_scope is not None: gm_b._node_name_to_scope = maybe_model_b_node_name_to_scope return _add_shadow_loggers_impl( name_a, gm_a, name_b, gm_b, logger_cls, should_log_inputs=should_log_inputs, base_name_to_sets_of_related_ops=base_name_to_sets_of_related_ops, node_type_to_io_type_map=node_type_to_io_type_map, unmatchable_types_map=unmatchable_types_map)
[docs]def extract_shadow_logger_info( model_a_shadows_b: nn.Module, logger_cls: Callable, model_name_to_use_for_layer_names: str, ) -> NSResultsType: """ Traverse all loggers in a shadow model, and extract the logged information. Args: model_a_shadows_b: shadow model logger_cls: class of Logger to use model_name_to_use_for_layer_names: string name of model to use for layer names in the output Return: NSResultsType, containing the logged comparisons """ torch._C._log_api_usage_once("quantization_api._numeric_suite_fx.extract_shadow_logger_info") results: NSResultsType = collections.defaultdict(dict) _extract_logger_info_one_model(model_a_shadows_b, results, logger_cls) # fill in missing fqn entries maybe_add_missing_fqns(results) # rekey on the name of model b results = rekey_logger_info_on_node_name_of_model( results, model_name_to_use_for_layer_names) return dict(results)
[docs]def extend_logger_results_with_comparison( results: NSResultsType, model_name_1: str, model_name_2: str, comparison_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor], comparison_name: str, ) -> None: """ Compares the logged values from `model_name_2` against the corresponding values in `model_name_1`, using `comparison_fn`. Records the result in `model_name_2`'s results under `comparison_name`. Modifies `results` inplace. Args: results: the result data structure from `extract_logger_info` or `extract_shadow_logger_info`. model_name_1: string name of model 1 model_name_2: string name of model 2 comparison_fn: function to compare two Tensors comparison_name: string name of model to use for layer names in the output """ for results_type_to_results in results.values(): for model_name_to_results in results_type_to_results.values(): assert model_name_1 in model_name_to_results, \ f"{model_name_1} not found in results" assert model_name_2 in model_name_to_results, \ f"{model_name_2} not found in results" results_1 = model_name_to_results[model_name_1] results_2 = model_name_to_results[model_name_2] for result_2 in results_2: index_within_arg_2 = result_2['index_within_arg'] index_of_arg_2 = result_2['index_of_arg'] # find corresponding result_1 result_1 = None for cur_result_1 in results_1: index_within_arg_1 = cur_result_1['index_within_arg'] index_of_arg_1 = cur_result_1['index_of_arg'] if ( (index_within_arg_1 == index_within_arg_2) and (index_of_arg_1 == index_of_arg_2) ): result_1 = cur_result_1 break assert result_1 is not None values_1 = result_1['values'] values_2 = result_2['values'] result_2[comparison_name] = [] for value_1, value_2 in zip(values_1, values_2): comparison_result = comparison_fn(value_1, value_2) result_2[comparison_name].append(comparison_result)
[docs]def prepare_n_shadows_model( model: torch.nn.Module, example_inputs: Any, qconfig_multi_mapping: QConfigMultiMapping, backend_config: BackendConfig, custom_prepare_fn: Optional[Callable] = None, custom_prepare_kwargs: Optional[Dict[str, Any]] = None, custom_tracer: Any = None, ) -> GraphModule: """ Given a model with a graph with M ops such as args_kwargs_m -> op_m -> output_m And a set of N qconfigs for each op, creates a new model, with each of the subgraph of `op_m` transformed into .. code:: |---------> op_m_n -> log_m_n | / args_kwargs_m ---------> op_m -> log_m_0 Where op_m_n is op_m wrapped in a submodule and transformed with qconfig_n, and its inner graph looks like .. code:: args_m -------- op_m_prepared_with_qconfig_n -> out_m_n / kwargs_m --- This is useful for testing different quantization of multiple layers in a single pass through the model. High level TODOs for future PRs: * figure out a better way to name the output structure * return a results data structure instead of printing it out * add examples to docblocks """ if custom_tracer is None: tracer = quantize_fx.QuantizationTracer([], []) else: tracer = custom_tracer mt = torch.fx.GraphModule(model, tracer.trace(model)) # this is necessary to ensure logger FQNs get populated mt._node_name_to_scope = tracer.node_name_to_scope # run example input propagation, we need this to call prepare_fx on # individual subgraphs output_prop = OutputProp(mt) output_prop.propagate(*example_inputs) # Find the set of subgraphs in the original graph which we need to # consider. modules = dict(mt.named_modules(remove_duplicate=False)) patterns = _get_pattern_to_quantize_handlers(backend_config) root_node_getter_mapping = \ get_fusion_pattern_to_root_node_getter(backend_config) standalone_module_names: List[str] = [] standalone_module_classes: List[Type] = [] custom_module_classes: List[Type] = [] matches = _find_matches( mt.graph, modules, patterns, root_node_getter_mapping, standalone_module_names, standalone_module_classes, custom_module_classes) subgraphs_dedup: Dict[str, List[Node]] = \ _get_dedup_subgraphs(matches) # generate node to qconfig for each subgraph # TODO(future PR): deduplicate repeating entries list_of_node_name_to_qconfig: List[Dict[str, QConfigAny]] = [] for qconfig_mapping in qconfig_multi_mapping.qconfig_mappings_list: node_name_to_qconfig = _generate_node_name_to_qconfig( mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope) list_of_node_name_to_qconfig.append(node_name_to_qconfig) # For each region in the model, do the following: # For each qconfig for that region, do the following: # 1. create a copy of the region wrapped in a module # 2. pass original args, original kwargs, and expected output to module # 3. add an output comparison logger and hook it up to compare # actual output to expected output # 4. run `prepare_fx` on the module for (subgraph_idx, (match_name, nodes_in_this_subgraph)) in \ enumerate(subgraphs_dedup.items()): create_n_transformed_and_logged_copies_of_subgraph( mt, subgraph_idx, match_name, nodes_in_this_subgraph, qconfig_multi_mapping.qconfig_mappings_list, list_of_node_name_to_qconfig, custom_prepare_fn, custom_prepare_kwargs # type: ignore[arg-type] ) return mt
# TODO(future PR): we should rethink the names of all the PNP APIs def _prepare_n_shadows_add_loggers_model( model: torch.nn.Module, example_inputs: Any, qconfig_mapping: QConfigMapping, backend_config: BackendConfig, ) -> torch.nn.Module: r""" Note: this API is not recommended for wide usage, it is only provided for customers who need to migrate from the `add_loggers` API. This creates a model which provides logging for the following problem: if we quantize `model` with `qconfig_mapping` and feed the same input through both models, log the comparisons of corresponding intermediate layers. The problem is solved with a single model. Specifically, we partition `model` into N subgraphs, create a copy of each relevant subgraph, wrap it in a module, apply the quantization API to that module, and hook up loggers to measure the comparisons. Example starting graph: x0 -> op0 -> x1 -> op1 -> x2 Example config: quantize op0 to int8, do nothing to op1. The following graph will be created: .. code:: x0_0 -> op0_0 -> x1_0 -> log -----> op1_0 -> x2_0 -> log \ \ \ # noqa: W605 ---> op0_1 -> x1_1 ----> clog -> op1_0 -> x2_1 ----> clog Where op0_0 is op0, op0_1 is op0 wrapped in a submodule and quantized to int8, op1_0 is op1 (appearing in the graph twice), log is a logger, and clog is a comparison logger. """ tracer = quantize_fx.QuantizationTracer([], []) mt = torch.fx.GraphModule(model, tracer.trace(model)) # this is necessary to ensure logger FQNs get populated mt._node_name_to_scope = tracer.node_name_to_scope # run example input propagation, we need this to call prepare_fx on # individual subgraphs output_prop = OutputProp(mt) output_prop.propagate(*example_inputs) # Find the set of subgraphs in the original graph which we need to # consider. modules = dict(mt.named_modules(remove_duplicate=False)) patterns = _get_pattern_to_quantize_handlers(backend_config) root_node_getter_mapping = \ get_fusion_pattern_to_root_node_getter(backend_config) standalone_module_names: List[str] = [] standalone_module_classes: List[Type] = [] custom_module_classes: List[Type] = [] matches = _find_matches( mt.graph, modules, patterns, root_node_getter_mapping, standalone_module_names, standalone_module_classes, custom_module_classes) subgraphs_dedup: Dict[str, List[Node]] = \ _get_dedup_subgraphs(matches) # generate node to qconfig for each subgraph node_name_to_qconfig = _generate_node_name_to_qconfig( mt, modules, mt.graph, qconfig_mapping, tracer.node_name_to_scope) # Now, mutate the graph to be the add_loggers graph with propagation # error. create_add_loggers_graph( mt, subgraphs_dedup, qconfig_mapping, node_name_to_qconfig) return mt # TODO(future PR): we should rethink the names of all the PNP APIs def _n_shadows_compare_weights( model: torch.nn.Module, example_inputs: Any, qconfig_mapping: QConfigMapping, backend_config: BackendConfig, ) -> NSResultsType: """ Note: this API is not recommended for wide usage, it is only provided for customers who need to migrate from the `add_loggers` API. """ qconfig_multi_mapping = \ QConfigMultiMapping.from_list_qconfig_mapping([qconfig_mapping]) mp = prepare_n_shadows_model( model, example_inputs, qconfig_multi_mapping, backend_config) # passing inputs through the model is necessary to populate # observers which observe weights with real values mp(*example_inputs) mq = convert_n_shadows_model(mp) weight_comparison = extract_weight_comparison(mq) return weight_comparison # TODO(future PR): consider aligning API signature with other similar quantization # functions (enable_fake_quant, etc)
[docs]def loggers_set_enabled(model: torch.nn.Module, enabled: bool) -> None: """ Sets the `enabled` setting on a `model`'s loggers """ for name, child in model.named_modules(): if isinstance(child, OutputLogger): child.enabled = enabled
# TODO(future PR): consider aligning API signature with other similar quantization # functions (enable_fake_quant, etc)
[docs]def loggers_set_save_activations( model: torch.nn.Module, save_activations: bool, ) -> None: """ Sets the `save_activations` setting on a `model`'s loggers """ for name, child in model.named_modules(): if isinstance(child, OutputLogger): child.save_activations = save_activations
[docs]def convert_n_shadows_model( model: GraphModule, custom_convert_fn: Optional[Callable] = None, custom_convert_kwargs: Optional[Dict[str, Any]] = None ) -> GraphModule: """ Given a model from `prepare_n_shadows_model`, runs `convert_fx` on each shadow submodule. """ for node in model.graph.nodes: # TODO(future PR): consider matching in a safer way than # node name string match if node.name.startswith(SHADOW_WRAPPER_NODE_NAME_PREFIX): orig_mod = getattr(model, node.name) if custom_convert_fn is None: converted_mod = torch.ao.quantization.quantize_fx.convert_fx( orig_mod) else: if custom_convert_kwargs is None: custom_convert_kwargs = {} converted_mod = custom_convert_fn(orig_mod, **custom_convert_kwargs) setattr(model, node.name, converted_mod) return model
[docs]def extract_results_n_shadows_model(model: torch.nn.Module) -> NSResultsType: """ Extracts logger results from `model`. """ results: NSResultsType = {} _extract_logger_info_one_model(model, results, OutputLogger) return results

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources