Source code for torch.ao.nn.quantized.modules.batchnorm
# mypy: allow-untyped-defs
import torch
import torch.ao.nn.intrinsic as nni
__all__ = [
"BatchNorm2d",
"BatchNorm3d"
]
class _BatchNorm(torch.nn.modules.batchnorm._BatchNorm):
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(num_features, eps, momentum, True, True, **factory_kwargs)
self.register_buffer('scale', torch.tensor(1.0, **factory_kwargs))
self.register_buffer('zero_point', torch.tensor(0, **factory_kwargs))
@staticmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
activation_post_process = mod.activation_post_process
if type(mod) == cls._NNI_BN_RELU_MODULE:
mod = mod[0]
scale, zero_point = activation_post_process.calculate_qparams()
new_mod = cls(mod.num_features, mod.eps)
new_mod.weight = mod.weight
new_mod.bias = mod.bias
new_mod.running_mean = mod.running_mean
new_mod.running_var = mod.running_var
new_mod.scale = scale
new_mod.zero_point = zero_point
return new_mod
@classmethod
def from_reference(cls, bn, output_scale, output_zero_point):
qbn = cls(
bn.num_features,
bn.eps,
bn.momentum,
device=bn.weight.device,
dtype=bn.weight.dtype
)
qbn.weight = bn.weight
qbn.bias = bn.bias
qbn.running_mean = bn.running_mean
qbn.running_var = bn.running_var
qbn.scale = output_scale
qbn.zero_point = output_zero_point
return qbn
[docs]class BatchNorm2d(_BatchNorm):
r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`.
"""
_NNI_BN_RELU_MODULE = nni.BNReLU2d
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(num_features, eps, momentum, **factory_kwargs)
def _get_name(self):
return 'QuantizedBatchNorm2d'
def _check_input_dim(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 4:
raise ValueError("Input shape must be `(N, C, H, W)`!")
def forward(self, input: torch.Tensor) -> torch.Tensor:
# disabling this since this is not symbolically traceable
# self._check_input_dim(input)
return torch.ops.quantized.batch_norm2d(
input, self.weight, self.bias, self.running_mean,
self.running_var, self.eps, self.scale, self.zero_point)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return _BatchNorm.from_float(cls, mod, use_precomputed_fake_quant=use_precomputed_fake_quant)
[docs]class BatchNorm3d(_BatchNorm):
r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`.
"""
_NNI_BN_RELU_MODULE = nni.BNReLU3d
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(num_features, eps, momentum, **factory_kwargs)
def _get_name(self):
return 'QuantizedBatchNorm3d'
def _check_input_dim(self, input):
# Temporarily using len(shape) instead of ndim due to JIT issue
# https://github.com/pytorch/pytorch/issues/23890
if len(input.shape) != 5:
raise ValueError("Input shape must be `(N, C, H, W)`!")
def forward(self, input: torch.Tensor) -> torch.Tensor:
# disabling this since this is not symbolically traceable
# self._check_input_dim(input)
return torch.ops.quantized.batch_norm3d(
input, self.weight, self.bias, self.running_mean,
self.running_var, self.eps, self.scale, self.zero_point)
@classmethod
def from_float(cls, mod, use_precomputed_fake_quant=False):
return _BatchNorm.from_float(cls, mod, use_precomputed_fake_quant=use_precomputed_fake_quant)