Shortcuts

Note

This page describes an internal API which is not intended to be used outside of the PyTorch codebase and can be modified or removed without notice.

Source code for torch._tensor_str

# mypy: allow-untyped-defs
import contextlib
import dataclasses
import math
import textwrap
from typing import Any, Dict, Optional

import torch
from torch import inf


@dataclasses.dataclass
class __PrinterOptions:
    precision: int = 4
    threshold: float = 1000
    edgeitems: int = 3
    linewidth: int = 80
    sci_mode: Optional[bool] = None


PRINT_OPTS = __PrinterOptions()


# We could use **kwargs, but this will give better docs
[docs]def set_printoptions( precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None, ): r"""Set options for printing. Items shamelessly taken from NumPy Args: precision: Number of digits of precision for floating point output (default = 4). threshold: Total number of array elements which trigger summarization rather than full `repr` (default = 1000). edgeitems: Number of array items in summary at beginning and end of each dimension (default = 3). linewidth: The number of characters per line for the purpose of inserting line breaks (default = 80). Thresholded matrices will ignore this parameter. profile: Sane defaults for pretty printing. Can override with any of the above options. (any one of `default`, `short`, `full`) sci_mode: Enable (True) or disable (False) scientific notation. If None (default) is specified, the value is defined by `torch._tensor_str._Formatter`. This value is automatically chosen by the framework. Example:: >>> # Limit the precision of elements >>> torch.set_printoptions(precision=2) >>> torch.tensor([1.12345]) tensor([1.12]) >>> # Limit the number of elements shown >>> torch.set_printoptions(threshold=5) >>> torch.arange(10) tensor([0, 1, 2, ..., 7, 8, 9]) >>> # Restore defaults >>> torch.set_printoptions(profile='default') >>> torch.tensor([1.12345]) tensor([1.1235]) >>> torch.arange(10) tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ if profile is not None: if profile == "default": PRINT_OPTS.precision = 4 PRINT_OPTS.threshold = 1000 PRINT_OPTS.edgeitems = 3 PRINT_OPTS.linewidth = 80 elif profile == "short": PRINT_OPTS.precision = 2 PRINT_OPTS.threshold = 1000 PRINT_OPTS.edgeitems = 2 PRINT_OPTS.linewidth = 80 elif profile == "full": PRINT_OPTS.precision = 4 PRINT_OPTS.threshold = inf PRINT_OPTS.edgeitems = 3 PRINT_OPTS.linewidth = 80 if precision is not None: PRINT_OPTS.precision = precision if threshold is not None: PRINT_OPTS.threshold = threshold if edgeitems is not None: PRINT_OPTS.edgeitems = edgeitems if linewidth is not None: PRINT_OPTS.linewidth = linewidth PRINT_OPTS.sci_mode = sci_mode
def get_printoptions() -> Dict[str, Any]: r"""Gets the current options for printing, as a dictionary that can be passed as ``**kwargs`` to set_printoptions(). """ return dataclasses.asdict(PRINT_OPTS) @contextlib.contextmanager def printoptions(**kwargs): r"""Context manager that temporarily changes the print options. Accepted arguments are same as :func:`set_printoptions`.""" old_kwargs = get_printoptions() set_printoptions(**kwargs) try: yield finally: set_printoptions(**old_kwargs) def tensor_totype(t): dtype = torch.float if t.is_mps else torch.double return t.to(dtype=dtype) class _Formatter: def __init__(self, tensor): self.floating_dtype = tensor.dtype.is_floating_point self.int_mode = True self.sci_mode = False self.max_width = 1 with torch.no_grad(): tensor_view = tensor.reshape(-1) if not self.floating_dtype: for value in tensor_view: value_str = f"{value}" self.max_width = max(self.max_width, len(value_str)) else: nonzero_finite_vals = torch.masked_select( tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0) ) if nonzero_finite_vals.numel() == 0: # no valid number, do nothing return # Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU. nonzero_finite_abs = tensor_totype(nonzero_finite_vals.abs()) nonzero_finite_min = tensor_totype(nonzero_finite_abs.min()) nonzero_finite_max = tensor_totype(nonzero_finite_abs.max()) for value in nonzero_finite_vals: if value != torch.ceil(value): self.int_mode = False break if self.int_mode: # in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites # to indicate that the tensor is of floating type. add 1 to the len to account for this. if ( nonzero_finite_max / nonzero_finite_min > 1000.0 or nonzero_finite_max > 1.0e8 ): self.sci_mode = True for value in nonzero_finite_vals: value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value) self.max_width = max(self.max_width, len(value_str)) else: for value in nonzero_finite_vals: value_str = f"{value:.0f}" self.max_width = max(self.max_width, len(value_str) + 1) else: # Check if scientific representation should be used. if ( nonzero_finite_max / nonzero_finite_min > 1000.0 or nonzero_finite_max > 1.0e8 or nonzero_finite_min < 1.0e-4 ): self.sci_mode = True for value in nonzero_finite_vals: value_str = f"{{:.{PRINT_OPTS.precision}e}}".format(value) self.max_width = max(self.max_width, len(value_str)) else: for value in nonzero_finite_vals: value_str = f"{{:.{PRINT_OPTS.precision}f}}".format(value) self.max_width = max(self.max_width, len(value_str)) if PRINT_OPTS.sci_mode is not None: self.sci_mode = PRINT_OPTS.sci_mode def width(self): return self.max_width def format(self, value): if self.floating_dtype: if self.sci_mode: ret = f"{{:{self.max_width}.{PRINT_OPTS.precision}e}}".format(value) elif self.int_mode: ret = f"{value:.0f}" if not (math.isinf(value) or math.isnan(value)): ret += "." else: ret = f"{{:.{PRINT_OPTS.precision}f}}".format(value) else: ret = f"{value}" return (self.max_width - len(ret)) * " " + ret def _scalar_str(self, formatter1, formatter2=None): if formatter2 is not None: real_str = _scalar_str(self.real, formatter1) imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip() # handles negative numbers, +0.0, -0.0 if imag_str[0] == "+" or imag_str[0] == "-": return real_str + imag_str else: return real_str + "+" + imag_str else: return formatter1.format(self.item()) def _vector_str(self, indent, summarize, formatter1, formatter2=None): # length includes spaces and comma between elements element_length = formatter1.width() + 2 if formatter2 is not None: # width for imag_formatter + an extra j for complex element_length += formatter2.width() + 1 elements_per_line = max( 1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length))) ) def _val_formatter(val, formatter1=formatter1, formatter2=formatter2): if formatter2 is not None: real_str = formatter1.format(val.real) imag_str = (formatter2.format(val.imag) + "j").lstrip() # handles negative numbers, +0.0, -0.0 if imag_str[0] == "+" or imag_str[0] == "-": return real_str + imag_str else: return real_str + "+" + imag_str else: return formatter1.format(val) if summarize and not PRINT_OPTS.edgeitems: # Deal with edge case that negative zero is zero data = ["..."] elif summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems: data = ( [_val_formatter(val) for val in self[: PRINT_OPTS.edgeitems].tolist()] + [" ..."] + [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems :].tolist()] ) else: data = [_val_formatter(val) for val in self.tolist()] data_lines = [ data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line) ] lines = [", ".join(line) for line in data_lines] return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]" # formatter2 is only used for printing complex tensors. # For complex tensors, formatter1 and formatter2 are the formatters for tensor.real # and tensor.imag respesectively def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None): dim = self.dim() if dim == 0: return _scalar_str(self, formatter1, formatter2) if dim == 1: return _vector_str(self, indent, summarize, formatter1, formatter2) if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems: slices = ( [ _tensor_str_with_formatter( self[i], indent + 1, summarize, formatter1, formatter2 ) for i in range(0, PRINT_OPTS.edgeitems) ] + ["..."] + [ _tensor_str_with_formatter( self[i], indent + 1, summarize, formatter1, formatter2 ) for i in range(len(self) - PRINT_OPTS.edgeitems, len(self)) ] ) else: slices = [ _tensor_str_with_formatter( self[i], indent + 1, summarize, formatter1, formatter2 ) for i in range(0, self.size(0)) ] tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices) return "[" + tensor_str + "]" def _tensor_str(self, indent): if self.numel() == 0: return "[]" if self.has_names(): # There are two main codepaths (possibly more) that tensor printing goes through: # - tensor data can fit comfortably on screen # - tensor data needs to be summarized # Some of the codepaths don't fully support named tensors, so we send in # an unnamed tensor to the formatting code as a workaround. self = self.rename(None) summarize = self.numel() > PRINT_OPTS.threshold if self._is_zerotensor(): self = self.clone() # handle the negative bit if self.is_neg(): self = self.resolve_neg() if self.dtype in [ torch.float16, torch.bfloat16, torch.float8_e5m2, torch.float8_e5m2fnuz, torch.float8_e4m3fn, torch.float8_e4m3fnuz, ]: self = self.float() if self.dtype is torch.complex32: self = self.cfloat() if self.dtype.is_complex: # handle the conjugate bit self = self.resolve_conj() real_formatter = _Formatter( get_summarized_data(self.real) if summarize else self.real ) imag_formatter = _Formatter( get_summarized_data(self.imag) if summarize else self.imag ) return _tensor_str_with_formatter( self, indent, summarize, real_formatter, imag_formatter ) else: formatter = _Formatter(get_summarized_data(self) if summarize else self) return _tensor_str_with_formatter(self, indent, summarize, formatter) def _add_suffixes(tensor_str, suffixes, indent, force_newline): tensor_strs = [tensor_str] last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1 for suffix in suffixes: suffix_len = len(suffix) if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth: tensor_strs.append(",\n" + " " * indent + suffix) last_line_len = indent + suffix_len force_newline = False else: tensor_strs.append(", " + suffix) last_line_len += suffix_len + 2 tensor_strs.append(")") return "".join(tensor_strs) def get_summarized_data(self): dim = self.dim() if dim == 0: return self if dim == 1: if self.size(0) > 2 * PRINT_OPTS.edgeitems: return torch.cat( (self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :]) ) else: return self if not PRINT_OPTS.edgeitems: return self.new_empty([0] * self.dim()) elif self.size(0) > 2 * PRINT_OPTS.edgeitems: start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)] end = [self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))] return torch.stack([get_summarized_data(x) for x in (start + end)]) else: return torch.stack([get_summarized_data(x) for x in self]) def _str_intern(inp, *, tensor_contents=None): if torch._C._functorch.is_functorch_wrapped_tensor(inp): return _functorch_wrapper_str_intern(inp, tensor_contents=tensor_contents) is_plain_tensor = type(inp) is torch.Tensor or type(inp) is torch.nn.Parameter if inp.is_nested: prefix = "nested_tensor(" elif is_plain_tensor: prefix = "tensor(" else: prefix = f"{type(inp).__name__}(" indent = len(prefix) suffixes = [] custom_contents_provided = tensor_contents is not None if custom_contents_provided: tensor_str = tensor_contents # This is used to extract the primal value and thus disable the forward AD # within this function. # TODO(albanD) This needs to be updated when more than one level is supported self, tangent = torch.autograd.forward_ad.unpack_dual(inp) # Note [Print tensor device]: # A general logic here is we only print device when it doesn't match # the device specified in default tensor type. # Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus # torch._C._get_default_device() only returns either cpu or cuda. # In other cases, we don't have a way to set them as default yet, # and we should always print out device for them. if ( self.device.type != torch._C._get_default_device() or ( self.device.type == "cuda" and torch.cuda.current_device() != self.device.index ) or (self.device.type == "mps") ): suffixes.append("device='" + str(self.device) + "'") # Tensor printing performs tensor operations like slice, indexing, etc to make it in a # representable format. These operations on ipu/xla/lazy/mtia tensor results in compilations. Hence, # to avoid compilations, copying the tensor to cpu before printing. if self.device.type in ["xla", "lazy", "ipu", "mtia"]: self = self.to("cpu") # TODO: add an API to map real -> complex dtypes _default_complex_dtype = ( torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat ) has_default_dtype = self.dtype in ( torch.get_default_dtype(), _default_complex_dtype, torch.int64, torch.bool, ) if self.is_sparse: suffixes.append("size=" + str(tuple(self.shape))) from torch._subclasses.fake_tensor import FakeTensor is_meta = self.is_meta or isinstance(self, FakeTensor) if not is_meta: suffixes.append("nnz=" + str(self._nnz())) if not has_default_dtype: suffixes.append("dtype=" + str(self.dtype)) if not custom_contents_provided: indices_prefix = "indices=tensor(" indices = self._indices().detach() if is_meta: indices_str = "..." else: indices_str = _tensor_str(indices, indent + len(indices_prefix)) if is_meta or indices.numel() == 0: indices_str += ", size=" + str(tuple(indices.shape)) values_prefix = "values=tensor(" values = self._values().detach() if is_meta: values_str = "..." else: values_str = _tensor_str(values, indent + len(values_prefix)) if is_meta or values.numel() == 0: values_str += ", size=" + str(tuple(values.shape)) tensor_str = ( indices_prefix + indices_str + "),\n" + " " * indent + values_prefix + values_str + ")" ) elif self.layout in { torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc, }: from torch._subclasses.fake_tensor import FakeTensor suffixes.append("size=" + str(tuple(self.shape))) is_meta = self.is_meta or isinstance(self, FakeTensor) if not is_meta: suffixes.append("nnz=" + str(self._nnz())) if not has_default_dtype: suffixes.append("dtype=" + str(self.dtype)) if not custom_contents_provided: compressed_indices_method, plain_indices_method = { torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices), torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices), }[self.layout] if self.layout in {torch.sparse_csr, torch.sparse_bsr}: cdimname, pdimname = "row", "column" else: cdimname, pdimname = "column", "row" compressed_indices_prefix = f"c{cdimname[:3]}_indices=tensor(" compressed_indices = compressed_indices_method(self).detach() if is_meta: compressed_indices_str = "..." else: compressed_indices_str = _tensor_str( compressed_indices, indent + len(compressed_indices_prefix) ) if compressed_indices.numel() == 0 or is_meta: compressed_indices_str += ", size=" + str( tuple(compressed_indices.shape) ) plain_indices_prefix = f"{pdimname[:3]}_indices=tensor(" plain_indices = plain_indices_method(self).detach() if is_meta: plain_indices_str = "..." else: plain_indices_str = _tensor_str( plain_indices, indent + len(plain_indices_prefix) ) if plain_indices.numel() == 0 or is_meta: plain_indices_str += ", size=" + str(tuple(plain_indices.shape)) values_prefix = "values=tensor(" values = self.values().detach() if is_meta: values_str = "..." else: values_str = _tensor_str(values, indent + len(values_prefix)) if values.numel() == 0 or is_meta: values_str += ", size=" + str(tuple(values.shape)) tensor_str = ( compressed_indices_prefix + compressed_indices_str + "),\n" + " " * indent + plain_indices_prefix + plain_indices_str + "),\n" + " " * indent + values_prefix + values_str + ")" ) elif self.is_quantized: suffixes.append("size=" + str(tuple(self.shape))) if not has_default_dtype: suffixes.append("dtype=" + str(self.dtype)) suffixes.append("quantization_scheme=" + str(self.qscheme())) if ( self.qscheme() == torch.per_tensor_affine or self.qscheme() == torch.per_tensor_symmetric ): suffixes.append("scale=" + str(self.q_scale())) suffixes.append("zero_point=" + str(self.q_zero_point())) elif ( self.qscheme() == torch.per_channel_affine or self.qscheme() == torch.per_channel_symmetric or self.qscheme() == torch.per_channel_affine_float_qparams ): suffixes.append("scale=" + str(self.q_per_channel_scales())) suffixes.append("zero_point=" + str(self.q_per_channel_zero_points())) suffixes.append("axis=" + str(self.q_per_channel_axis())) if not custom_contents_provided: tensor_str = _tensor_str(self.dequantize(), indent) elif self.is_nested: if not custom_contents_provided: def indented_str(s, indent): return "\n".join(f" {line}" for line in s.split("\n")) strs = ",\n".join( indented_str(str(t), indent + 1) for t in torch.ops.aten.unbind.int(self, 0) ) tensor_str = f"[\n{strs}\n]" elif torch._is_functional_tensor(self): prefix = "_to_functional_tensor(" tensor_str = repr(torch._from_functional_tensor(self)) else: # Circular import problem, so we import it here from torch._subclasses.fake_tensor import FakeTensor if self.is_meta or isinstance(self, FakeTensor): suffixes.append("size=" + str(tuple(self.shape))) if self.dtype != torch.get_default_dtype(): suffixes.append("dtype=" + str(self.dtype)) # TODO: This implies that ellipses is valid syntax for allocating # a meta tensor or FakeTensor, which it could be, but it isn't right now if not custom_contents_provided: tensor_str = "..." else: if self.numel() == 0 and not self.is_sparse: # Explicitly print the shape if it is not (0,), to match NumPy behavior if self.dim() != 1: suffixes.append("size=" + str(tuple(self.shape))) # In an empty tensor, there are no elements to infer if the dtype # should be int64, so it must be shown explicitly. if self.dtype != torch.get_default_dtype(): suffixes.append("dtype=" + str(self.dtype)) if not custom_contents_provided: tensor_str = "[]" else: if not PRINT_OPTS.edgeitems: suffixes.append("size=" + str(tuple(self.shape))) if not has_default_dtype: suffixes.append("dtype=" + str(self.dtype)) if not custom_contents_provided: if self.layout != torch.strided: tensor_str = _tensor_str(self.to_dense(), indent) else: tensor_str = _tensor_str(self, indent) if self.layout != torch.strided: suffixes.append("layout=" + str(self.layout)) # Use inp here to get the original grad_fn and not the one generated by the forward grad # unpacking. grad_fn_name = None try: grad_fn = inp.grad_fn except RuntimeError: # Accessing the grad_fn calls rebasing logic which would cause an error # if that tensor is a view created in no-grad mode modified in-place in # no-grad mode. See: https://github.com/pytorch/pytorch/issues/99968 grad_fn_name = "Invalid" if grad_fn_name is None and grad_fn is not None: # type: ignore[possibly-undefined] grad_fn_name = type(grad_fn).__name__ if grad_fn_name == "CppFunction": grad_fn_name = grad_fn.name().rsplit("::", 1)[-1] if grad_fn_name is not None: suffixes.append(f"grad_fn=<{grad_fn_name}>") elif inp.requires_grad: suffixes.append("requires_grad=True") if self.has_names(): suffixes.append(f"names={self.names}") if tangent is not None: suffixes.append(f"tangent={tangent}") string_repr = _add_suffixes( prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse # type: ignore[possibly-undefined] ) # Check if this instance is flagged as a parameter and change the repr accordingly. # Unfortunately, this function has to be aware of this detail. # NB: This is currently skipped for plain tensor parameters to maintain BC. In the future, # this should be done for those as well to produce a valid repr. if isinstance(self, torch.nn.Parameter) and not is_plain_tensor: string_repr = f"Parameter({string_repr})" return string_repr def _functorch_wrapper_str_intern(tensor, *, tensor_contents=None): level = torch._C._functorch.maybe_get_level(tensor) assert level != -1 if torch._C._functorch.is_functionaltensor(tensor): # Since we're unwrapping the FunctionalTensorWrapper, we need to make sure # that it's up to date first torch._sync(tensor) value = torch._C._functorch.get_unwrapped(tensor) value_repr = repr(value) indented_value_repr = textwrap.indent(value_repr, " " * 4) if torch._C._functorch.is_batchedtensor(tensor): bdim = torch._C._functorch.maybe_get_bdim(tensor) assert bdim != -1 return ( f"BatchedTensor(lvl={level}, bdim={bdim}, value=\n" f"{indented_value_repr}\n" f")" ) if torch._C._functorch.is_gradtrackingtensor(tensor): return ( f"GradTrackingTensor(lvl={level}, value=\n" f"{indented_value_repr}\n" f")" ) if torch._C._functorch.is_functionaltensor(tensor): return f"FunctionalTensor(lvl={level}, value=\\\n{value_repr})" raise ValueError("We don't know how to print this, please file us an issue") def _str(self, *, tensor_contents=None): with torch.no_grad(), torch.utils._python_dispatch._disable_current_modes(): guard = torch._C._DisableFuncTorch() return _str_intern(self, tensor_contents=tensor_contents)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources