[docs]classRprop(Optimizer):def__init__(self,params,lr=1e-2,etas=(0.5,1.2),step_sizes=(1e-6,50),*,foreach:Optional[bool]=None,maximize:bool=False,differentiable:bool=False,):ifnot0.0<=lr:raiseValueError(f"Invalid learning rate: {lr}")ifnot0.0<etas[0]<1.0<etas[1]:raiseValueError(f"Invalid eta values: {etas[0]}, {etas[1]}")defaults=dict(lr=lr,etas=etas,step_sizes=step_sizes,foreach=foreach,maximize=maximize,differentiable=differentiable,)super().__init__(params,defaults)def__setstate__(self,state):super().__setstate__(state)forgroupinself.param_groups:group.setdefault("foreach",None)group.setdefault("maximize",False)group.setdefault("differentiable",False)def_init_group(self,group,params,grads,prevs,step_sizes):has_complex=Falseforpingroup["params"]:ifp.gradisNone:continuehas_complex|=torch.is_complex(p)params.append(p)grad=p.gradifgrad.is_sparse:raiseRuntimeError("Rprop does not support sparse gradients")grads.append(grad)state=self.state[p]# State initializationiflen(state)==0:state["step"]=0state["prev"]=torch.zeros_like(p,memory_format=torch.preserve_format)ifp.dtype.is_complex:# Complex Number should be as if they are two independent real numbers.# Hence the step_size shouldn't be zero for imaginary part.state["step_size"]=(torch.full_like(grad,complex(group["lr"],group["lr"])))else:state["step_size"]=torch.full_like(grad,group["lr"])prevs.append(state["prev"])step_sizes.append(state["step_size"])state["step"]+=1returnhas_complex
[docs]@_use_grad_for_differentiabledefstep(self,closure=None):"""Performs a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """loss=NoneifclosureisnotNone:withtorch.enable_grad():loss=closure()forgroupinself.param_groups:params=[]grads=[]prevs=[]step_sizes=[]etaminus,etaplus=group["etas"]step_size_min,step_size_max=group["step_sizes"]foreach=group["foreach"]maximize=group["maximize"]has_complex=self._init_group(group,params,grads,prevs,step_sizes)rprop(params,grads,prevs,step_sizes,step_size_min=step_size_min,step_size_max=step_size_max,etaminus=etaminus,etaplus=etaplus,foreach=foreach,maximize=maximize,differentiable=group["differentiable"],has_complex=has_complex,)returnloss
Rprop.__doc__=r"""Implements the resilient backpropagation algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta) \text{ (objective)}, \\ &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min} \text{ (step sizes)} \\ &\textbf{initialize} : g^0_{prev} \leftarrow 0, \: \eta_0 \leftarrow \text{lr (learning rate)} \\ &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\ &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\ &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+}, \Gamma_{max}) \\ &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\ &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-}, \Gamma_{min}) \\ &\hspace{15mm} g^i_t \leftarrow 0 \\ &\hspace{10mm} \textbf{else} \: \\ &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\ &\hspace{5mm}g_{prev} \leftarrow g_t \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to the paper `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_. """+fr""" Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-2) etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that are multiplicative increase and decrease factors (default: (0.5, 1.2)) step_sizes (Tuple[float, float], optional): a pair of minimal and maximal allowed step sizes (default: (1e-6, 50)){_foreach_doc}{_maximize_doc}{_differentiable_doc} """defrprop(params:List[Tensor],grads:List[Tensor],prevs:List[Tensor],step_sizes:List[Tensor],# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627# setting this as kwarg for now as functional API is compiled by torch/distributed/optimforeach:Optional[bool]=None,maximize:bool=False,differentiable:bool=False,has_complex:bool=False,*,step_size_min:float,step_size_max:float,etaminus:float,etaplus:float,):r"""Functional API that performs rprop algorithm computation. See :class:`~torch.optim.Rprop` for details. """ifforeachisNone:_,foreach=_default_to_fused_or_foreach(params,differentiable,use_fused=False)ifforeachandtorch.jit.is_scripting():raiseRuntimeError("torch.jit.script not supported with foreach optimizers")ifforeachandnottorch.jit.is_scripting():func=_multi_tensor_rpropelse:func=_single_tensor_rpropfunc(params,grads,prevs,step_sizes,step_size_min=step_size_min,step_size_max=step_size_max,etaminus=etaminus,etaplus=etaplus,maximize=maximize,differentiable=differentiable,has_complex=has_complex,)def_single_tensor_rprop(params:List[Tensor],grads:List[Tensor],prevs:List[Tensor],step_sizes:List[Tensor],*,step_size_min:float,step_size_max:float,etaminus:float,etaplus:float,maximize:bool,differentiable:bool,has_complex:bool,):fori,paraminenumerate(params):grad=grads[i]grad=gradifnotmaximizeelse-gradprev=prevs[i]step_size=step_sizes[i]iftorch.is_complex(param):grad=torch.view_as_real(grad)prev=torch.view_as_real(prev)param=torch.view_as_real(param)step_size=torch.view_as_real(step_size)ifdifferentiable:sign=grad.mul(prev.clone()).sign()else:sign=grad.mul(prev).sign()sign[sign.gt(0)]=etaplussign[sign.lt(0)]=etaminussign[sign.eq(0)]=1# update stepsizes with step size updatesstep_size.mul_(sign).clamp_(step_size_min,step_size_max)# for dir<0, dfdx=0# for dir>=0 dfdx=dfdxgrad=grad.clone(memory_format=torch.preserve_format)grad[sign.eq(etaminus)]=0# update parametersparam.addcmul_(grad.sign(),step_size,value=-1)prev.copy_(grad)def_multi_tensor_rprop(params:List[Tensor],grads:List[Tensor],prevs:List[Tensor],step_sizes:List[Tensor],*,step_size_min:float,step_size_max:float,etaminus:float,etaplus:float,maximize:bool,differentiable:bool,has_complex:bool,):iflen(params)==0:returnassertnotdifferentiable,"_foreach ops don't support autograd"grouped_tensors=Optimizer._group_tensors_by_device_and_dtype([params,grads,prevs,step_sizes])for((grouped_params,grouped_grads,grouped_prevs,grouped_step_sizes),_)ingrouped_tensors.values():# Handle complex paramsifhas_complex:_view_as_real(grouped_params,grouped_grads,grouped_prevs,grouped_step_sizes)signs=torch._foreach_mul(grouped_grads,grouped_prevs)ifmaximize:torch._foreach_neg_(signs)# At the end of the step, grouped_prevs will contain the current grads, so we reuse# grouped_prevs memory instead of creating a new buffer, but, for clarity, we reassign# to keep referring to the buffer as grouped_grads.torch._foreach_copy_(grouped_prevs,grouped_grads)ifmaximize:torch._foreach_neg_(grouped_prevs)grouped_grads=grouped_prevstorch._foreach_sign_(signs)forsigninsigns:sign[sign.gt(0)]=etaplussign[sign.lt(0)]=etaminussign[sign.eq(0)]=1# update stepsizes with step size updatestorch._foreach_mul_(grouped_step_sizes,signs)forstep_sizeingrouped_step_sizes:step_size.clamp_(step_size_min,step_size_max)# for dir<0, dfdx=0# for dir>=0 dfdx=dfdxgrouped_grads=list(grouped_grads)foriinrange(len(grouped_grads)):grouped_grads[i][signs[i].eq(etaminus)]=0# explicitly del signs as it's not used after here to save memorydelsigns# update parametersgrad_signs=[grad.sign()forgradingrouped_grads]torch._foreach_addcmul_(grouped_params,grad_signs,grouped_step_sizes,value=-1)# Logically, you may expect grouped_prevs to get updated to grouped_grads, but that's# basically already happened since we've been using grouped_prevs' memory to store# updated grouped_grads!
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.