from._opsimportOpOverloadfromtypingimportAny,Optional,Set,Listimporttracebackimporttorchimportweakrefimportfunctoolsimportinspectimportreimportcontextlibimportsys__all__=['Library','impl','define','fallthrough_kernel','impl_abstract','get_ctx',]# Set containing the combination of (namespace, operator, DispatchKey) for which a new kernel has been registered# The keys in the set are of the form `namespace + "/" + op_name + "/" + dispatch_key`.# This set is maintained to ensure that two libraries don't try to override the exact same functionality to avoid# libraries calling into kernels not intended to be called._impls:Set[str]=set()_defs:Set[str]=set()# prim is reserved by TorchScript interpreter_reserved_namespaces=['prim']
[docs]deffallthrough_kernel():""" A dummy function to pass to ``Library.impl`` in order to register a fallthrough. """raiseNotImplementedError("fallthrough_kernel() should never be called.")
[docs]classLibrary:""" A class to create libraries that can be used to register new operators or override operators in existing libraries from Python. A user can optionally pass in a dispatch keyname if they only want to register kernels corresponding to only one specific dispatch key. To create a library to override operators in an existing library (with name ns), set the kind to "IMPL". To create a new library (with name ns) to register new operators, set the kind to "DEF". To create a fragment of a possibly existing library to register operators (and bypass the limitation that there is only one library for a given namespace), set the kind to "FRAGMENT". Args: ns: library name kind: "DEF", "IMPL" (default: "IMPL"), "FRAGMENT" dispatch_key: PyTorch dispatch key (default: "") """def__init__(self,ns,kind,dispatch_key=""):ifkindnotin('IMPL','DEF','FRAGMENT'):raiseValueError("Unsupported kind: ",kind)ifnsin_reserved_namespacesand(kind=="DEF"orkind=='FRAGMENT'):raiseValueError(ns," is a reserved namespace. Please try creating a library with another name.")frame=traceback.extract_stack(limit=3)[0]filename,lineno=frame.filename,frame.linenoself.m:Optional[Any]=torch._C._dispatch_library(kind,ns,dispatch_key,filename,lineno)self.ns=nsself._op_defs:Set[str]=set()self._op_impls:Set[str]=set()self._registration_handles:List["torch._library.utils.RegistrationHandle"]=[]self.kind=kindself.dispatch_key=dispatch_key# Use a finalizer to setup the "destructor" instead of __del__.# Python __del__ can lead to weird things (globals and locals may already# be gone when __del__ actually gets called!). finalizers help the# situation because it lets us capture references and keeps them aliveweakref.finalize(self,_del_library,_impls,self._op_impls,_defs,self._op_defs,self._registration_handles)def__repr__(self):returnf"Library(kind={self.kind}, ns={self.ns}, dispatch_key={self.dispatch_key})>"
[docs]defdefine(self,schema,alias_analysis="",*,tags=()):r'''Defines a new operator and its semantics in the ns namespace. Args: schema: function schema to define a new operator. alias_analysis (optional): Indicates if the aliasing properties of the operator arguments can be inferred from the schema (default behavior) or not ("CONSERVATIVE"). tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this operator. Tagging an operator changes the operator's behavior under various PyTorch subsystems; please read the docs for the torch.Tag carefully before applying it. Returns: name of the operator as inferred from the schema. Example:: >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LIBRARY) >>> my_lib = Library("foo", "DEF") >>> my_lib.define("sum(Tensor self) -> Tensor") '''# This is added because we also want to disallow PURE_FUNCTION alias analysis which is a valid# AliasAnalysis type in C++ifalias_analysisnotin["","FROM_SCHEMA","CONSERVATIVE"]:raiseRuntimeError(f"Invalid alias_analysis type {alias_analysis}")assertself.misnotNoneifisinstance(tags,torch.Tag):tags=(tags,)result=self.m.define(schema,alias_analysis,tuple(tags))qualname=self.ns+"::"+schema.split("(")[0]self._op_defs.add(qualname)_defs.add(qualname)returnresult
[docs]defimpl(self,op_name,fn,dispatch_key=''):r'''Registers the function implementation for an operator defined in the library. Args: op_name: operator name (along with the overload) or OpOverload object. fn: function that's the operator implementation for the input dispatch key or :func:`~fallthrough_kernel` to register a fallthrough. dispatch_key: dispatch key that the input function should be registered for. By default, it uses the dispatch key that the library was created with. Example:: >>> my_lib = Library("aten", "IMPL") >>> def div_cpu(self, other): >>> return self * (1 / other) >>> my_lib.impl("div.Tensor", div_cpu, "CPU") '''ifnotcallable(fn):raiseTypeError(f"Input function is required to be a callable but found type {type(fn)}")ifdispatch_key=='':dispatch_key=self.dispatch_keyifisinstance(op_name,str):name=op_nameelifisinstance(op_name,OpOverload):name=op_name._schema.nameoverload_name=op_name._schema.overload_nameifoverload_name!='':name=name+'.'+overload_nameelse:raiseRuntimeError("impl should be passed either a name or an OpOverload object as the first argument")key=self.ns+"/"+name.split("::")[-1]+"/"+dispatch_keyifkeyin_impls:# TODO: in future, add more info about where the existing function is registered (this info is# today already returned by the C++ warning when impl is called but we error out before that)raiseRuntimeError("This is not allowed since there's already a kernel registered from python overriding {}""'s behavior for {} dispatch key and {} namespace.".format(name.split("::")[-1],dispatch_key,self.ns))ifdispatch_key=="Meta":dispatcher_op_name=nameif'::'notindispatcher_op_name:dispatcher_op_name=f'{self.ns}::{dispatcher_op_name}'# Internally, we shouldn't be registering meta kernels for any operators that# have CompositeImplicitAutograd kernels.# Instead, we should be letting those decompositions run, and writing meta kernels# only for the base operators.iftorch._C._dispatch_has_kernel_for_dispatch_key(dispatcher_op_name,"CompositeImplicitAutograd"):raiseRuntimeError(f"We should not register a meta kernel directly to the operator '{name}',"" because it has a CompositeImplicitAutograd kernel in core."" Instead we should let the operator decompose, and ensure that we have meta kernels"" for the base ops that it decomposes into.")assertself.misnotNoneself.m.impl(name,dispatch_keyifdispatch_key!=""else"CompositeImplicitAutograd",fn)_impls.add(key)self._op_impls.add(key)
def_destroy(self):ifself.misnotNone:self.m.reset()self.m=Noneforhandleinself._registration_handles:handle.destroy()self._registration_handles.clear()fornameinself._op_defs:# Delete the cached torch.ops.ns.foo if it was registered.# Otherwise, accessing it leads to a segfault.# It's possible that we only registered an overload in this Library# and another library owns an alive overload.# That's OK - the next time torch.ops.ns.foo gets called, it'll be# recomputed to point at the right collection of overloads.ns,name_with_overload=name.split("::")name=name_with_overload.split(".")[0]ifnothasattr(torch.ops,ns):continuenamespace=getattr(torch.ops,ns)ifnothasattr(namespace,name):continuedelattr(namespace,name)
[docs]@functools.singledispatchdefdefine(qualname,schema,*,lib=None,tags=()):r"""Defines a new operator. In PyTorch, defining an op (short for "operator") is a two step-process: - we need to define the op (by providing an operator name and schema) - we need to implement behavior for how the operator interacts with various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc. This entrypoint defines the custom operator (the first step) you must then perform the second step by calling various ``impl_*`` APIs, like :func:`torch.library.impl` or :func:`torch.library.impl_abstract`. Args: qualname (str): The qualified name for the operator. Should be a string that looks like "namespace::name", e.g. "aten::sin". Operators in PyTorch need a namespace to avoid name collisions; a given operator may only be created once. If you are writing a Python library, we recommend the namespace to be the name of your top-level module. schema (str): The schema of the operator. E.g. "(Tensor x) -> Tensor" for an op that accepts one Tensor and returns one Tensor. It does not contain the operator name (that is passed in ``qualname``). lib (Optional[Library]): If provided, the lifetime of this operator will be tied to the lifetime of the Library object. tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this operator. Tagging an operator changes the operator's behavior under various PyTorch subsystems; please read the docs for the torch.Tag carefully before applying it. Example:: >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LIBRARY) >>> import torch >>> import numpy as np >>> >>> # Define the operator >>> torch.library.define("mylib::sin", "(Tensor x) -> Tensor") >>> >>> # Add implementations for the operator >>> @torch.library.impl("mylibrary::sin", "cpu") >>> def f(x): >>> return torch.from_numpy(np.sin(x.numpy())) >>> >>> # Call the new operator from torch.ops. >>> x = torch.randn(3) >>> y = torch.ops.mylib.sin(x) >>> assert torch.allclose(y, x) """ifnotisinstance(qualname,str):raiseValueError(f"define(qualname, schema): expected qualname "f"to be instance of str, got {type(qualname)}")namespace,name=torch._library.utils.parse_namespace(qualname)iflibisNone:lib=Library(namespace,"FRAGMENT")_keep_alive.append(lib)ifnotNAMELESS_SCHEMA.fullmatch(schema):raiseValueError(f"define(qualname, schema, ...): expected schema "f"to look like e.g. \"(Tensor x) -> Tensor\" but "f"got \"{schema}\"")lib.define(name+schema,alias_analysis="",tags=tags)
@define.registerdef_(lib:Library,schema,alias_analysis=""):"""The old torch.library.define. We're keeping this around for BC reasons """defwrap(f):name=lib.define(schema,alias_analysis)lib.impl(name,f)returnfreturnwrap
[docs]@functools.singledispatchdefimpl(qualname,types,func=None,*,lib=None):"""Register an implementation for a device type for this operator. You may pass "default" for ``types`` to register this implementation as the default implementation for ALL device types. Please only use this if the implementation truly supports all device types; for example, this is true if it is a composition of built-in PyTorch operators. Some valid types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu". Args: qualname (str): Should be a string that looks like "namespace::operator_name". types (str | Sequence[str]): The device types to register an impl to. lib (Optional[Library]): If provided, the lifetime of this registration will be tied to the lifetime of the Library object. Examples: >>> import torch >>> import numpy as np >>> >>> # Define the operator >>> torch.library.define("mylibrary::sin", "(Tensor x) -> Tensor") >>> >>> # Add implementations for the cpu device >>> @torch.library.impl("mylibrary::sin", "cpu") >>> def f(x): >>> return torch.from_numpy(np.sin(x.numpy())) >>> >>> x = torch.randn(3) >>> y = torch.ops.mylibrary.sin(x) >>> assert torch.allclose(y, x.sin()) """ifisinstance(types,str):types=(types,)keys=set({})fortypintypes:is_dispatch_key=torch._C._parse_dispatch_key(typ)ifis_dispatch_key:# We also support passing a DispatchKey to impl. Please prefer using# the higher-level torch.library APIs and only pass DispatchKey to# torch.library.impl with caution (or even better, don't use this# option and file an issue on GitHub for what you need).# We don't advertise this to users because# it is very easy to shoot yourself in the foot.keys.add(typ)else:keys.add(_device_type_to_key(typ))defregister(func):namespace,_=torch._library.utils.parse_namespace(qualname)iflibisNone:use_lib=Library(namespace,"FRAGMENT")_keep_alive.append(use_lib)else:use_lib=libforkeyinkeys:use_lib.impl(qualname,func,key)iffuncisNone:returnregisterelse:register(func)
def_device_type_to_key(device_type:str)->str:ifdevice_type=="default":# This is technically not correct, because although all device_type# DispatchKeys are included in CompositeExplicitAutograd,# not everything in CompositeExplicitAutograd is associated with a# device_type. I don't really care that much about the difference.return"CompositeExplicitAutograd"returntorch._C._dispatch_key_for_device(device_type)@impl.registerdef_(lib:Library,name,dispatch_key=""):"""Legacy torch.library.impl API. Kept around for BC"""defwrap(f):lib.impl(name,f,dispatch_key)returnfreturnwrap
[docs]defimpl_abstract(qualname,func=None,*,lib=None,_stacklevel=1):r"""Register an abstract implementation for this operator. An "abstract implementation" specifies the behavior of this operator on Tensors that carry no data. Given some input Tensors with certain properties (sizes/strides/storage_offset/device), it specifies what the properties of the output Tensors are. The abstract implementation has the same signature as the operator. It is run for both FakeTensors and meta tensors. To write an abstract implementation, assume that all Tensor inputs to the operator are regular CPU/CUDA/Meta tensors, but they do not have storage, and you are trying to return regular CPU/CUDA/Meta tensor(s) as output. The abstract implementation must consist of only PyTorch operations (and may not directly access the storage or data of any input or intermediate Tensors). This API may be used as a decorator (see examples). For a detailed guide on custom ops, please see https://docs.google.com/document/d/1W--T6wz8IY8fOI0Vm8BF44PdBgs283QvpelJZWieQWQ/edit Examples: >>> import torch >>> import numpy as np >>> from torch import Tensor >>> >>> # Example 1: an operator without data-dependent output shape >>> torch.library.define( >>> "mylib::custom_linear", >>> "(Tensor x, Tensor weight, Tensor bias) -> Tensor") >>> >>> @torch.library.impl_abstract("mylib::custom_linear") >>> def custom_linear_abstract(x, weight): >>> assert x.dim() == 2 >>> assert weight.dim() == 2 >>> assert bias.dim() == 1 >>> assert x.shape[1] == weight.shape[1] >>> assert weight.shape[0] == bias.shape[0] >>> assert x.device == weight.device >>> >>> return (x @ weight.t()) + bias >>> >>> # Example 2: an operator with data-dependent output shape >>> torch.library.define("mylib::custom_nonzero", "(Tensor x) -> Tensor") >>> >>> @torch.library.impl_abstract("mylib::custom_nonzero") >>> def custom_nonzero_abstract(x): >>> # Number of nonzero-elements is data-dependent. >>> # Since we cannot peek at the data in an abstract impl, >>> # we use the ctx object to construct a new symint that >>> # represents the data-dependent size. >>> ctx = torch.library.get_ctx() >>> nnz = ctx.new_dynamic_size() >>> shape = [nnz, x.dim()] >>> result = x.new_empty(shape, dtype=torch.int64) >>> return result >>> >>> @torch.library.impl("mylib::custom_nonzero", "cpu") >>> def custom_nonzero_cpu(x): >>> x_np = x.numpy() >>> res = np.stack(np.nonzero(x_np), axis=1) >>> return torch.tensor(res, device=x.device) """source=torch._library.utils.get_source(_stacklevel+1)frame=sys._getframe(_stacklevel)caller_module=inspect.getmodule(frame)# Can be none if you call impl_abstract from somewhere there isn't a module# (e.g. __main__)caller_module_name=Noneifcaller_moduleisNoneelsecaller_module.__name__# TODO(rzou): We're gonna need to stage this change with torchvision,# since torchvision is github first.ifcaller_module_nameisnotNoneandcaller_module_name.startswith("torchvision."):caller_module_name=Nonedefinner(func):entry=torch._library.simple_registry.singleton.find(qualname)ifcaller_module_nameisnotNone:func_to_register=_check_pystubs_once(func,qualname,caller_module_name)else:func_to_register=funchandle=entry.abstract_impl.register(func_to_register,source)iflibisnotNone:lib._registration_handles.append(handle)returnfunciffuncisNone:returninnerreturninner(func)
# If the op was defined in C++, then we want to make sure there was an# m.impl_abstract_pystub(module, ...) call and that the module is the# same as the module that called torch.library.impl_abstract.def_check_pystubs_once(func,qualname,actual_module_name):checked=Falsedefinner(*args,**kwargs):nonlocalcheckedifchecked:returnfunc(*args,**kwargs)op=torch._library.utils.lookup_op(qualname)ifop._defined_in_python:checked=Truereturnfunc(*args,**kwargs)maybe_pystub=torch._C._dispatch_pystub(op._schema.name,op._schema.overload_name)ifnotmaybe_pystub:namespace=op.namespacecpp_filename=op._handle().debug()raiseRuntimeError(f"Operator '{qualname}' was defined in C++ and has a Python "f"abstract impl. In this situation, we require there to also be a "f"companion C++ `m.impl_abstract_pystub(\"{actual_module_name}\")` "f"call, but we could not find one. Please add that to "f"to the top of the C++ TORCH_LIBRARY({namespace}, ...) block the "f"operator was registered in ({cpp_filename})")pystub_module=maybe_pystub[0]ifactual_module_name!=pystub_module:cpp_filename=op._handle().debug()raiseRuntimeError(f"Operator '{qualname}' specified that its python abstract impl "f"is in the Python module '{pystub_module}' but it was actually found "f"in '{actual_module_name}'. Please either move the abstract impl "f"or correct the m.impl_abstract_pystub call ({cpp_filename})")checked=Truereturnfunc(*args,**kwargs)returninner# NOTE [ctx inside the fake implementation]# If a user has an operator with data-dependent output shape, then when writing# a fake implementation they must query the current ctx and use methods on the# ctx to construct a new unbacked symint.## This is done via us setting the global_ctx_getter function every time a fake# implementation is invoked.
[docs]defget_ctx()->"torch._library.abstract_impl.AbstractImplCtx":"""get_ctx() returns the current AbstractImplCtx object. Calling ``get_ctx()`` is only valid inside of an abstract impl (see :func:`torch.library.impl_abstract` for more usage details. """returntorch._library.abstract_impl.global_ctx_getter()
Docs
Access comprehensive developer documentation for PyTorch
To analyze traffic and optimize your experience, we serve cookies on this site. By clicking or navigating, you agree to allow our usage of cookies. As the current maintainers of this site, Facebook’s Cookies Policy applies. Learn more, including about available controls: Cookies Policy.