Shortcuts

Source code for torch.jit._async

"""Async API.

This module contains the API for parallelism in TorchScript, notably:
    * torch.jit.fork
    * torch.jit.wait

This is not intended to be imported directly; please use the exposed
functionalities in `torch.jit`.
"""

import torch
from torch._jit_internal import Future
from torch.jit._builtins import _register_builtin

from torch.utils import set_module

set_module(Future, "torch.jit")


[docs]def fork(func, *args, **kwargs): r""" Create an asynchronous task executing `func` and a reference to the value of the result of this execution. `fork` will return immediately, so the return value of `func` may not have been computed yet. To force completion of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily nested, and may be invoked with positional and keyword arguments. Asynchronous execution will only occur when run in TorchScript. If run in pure python, `fork` will not execute in parallel. `fork` will also not execute in parallel when invoked while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph. .. warning:: `fork` tasks will execute non-deterministically. We recommend only spawning parallel fork tasks for pure functions that do not modify their inputs, module attributes, or global state. Args: func (callable or torch.nn.Module): A Python function or `torch.nn.Module` that will be invoked. If executed in TorchScript, it will execute asynchronously, otherwise it will not. Traced invocations of fork will be captured in the IR. ``*args``, ``**kwargs``: arguments to invoke `func` with. Returns: `torch.jit.Future[T]`: a reference to the execution of `func`. The value `T` can only be accessed by forcing completion of `func` through `torch.jit.wait`. Example (fork a free function): .. code-block:: python import torch from torch import Tensor def foo(a : Tensor, b : int) -> Tensor: return a + b def bar(a): fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2) return torch.jit.wait(fut) script_bar = torch.jit.script(bar) input = torch.tensor(2) # only the scripted version executes asynchronously assert script_bar(input) == bar(input) # trace is not run asynchronously, but fork is captured in IR graph = torch.jit.trace(bar, (input,)).graph assert "fork" in str(graph) Example (fork a module method): .. code-block:: python import torch from torch import Tensor class AddMod(torch.nn.Module): def forward(self, a: Tensor, b : int): return a + b class Mod(torch.nn.Module): def __init__(self): super(self).__init__() self.mod = AddMod() def forward(self, input): fut = torch.jit.fork(self.mod, a, b=2) return torch.jit.wait(fut) input = torch.tensor(2) mod = Mod() assert mod(input) == torch.jit.script(mod).forward(input) """ return torch._C.fork(func, *args, **kwargs)
[docs]def wait(future): r""" Force completion of a `torch.jit.Future[T]` asynchronous task, returning the result of the task. See :func:`~fork` for docs and examples. Args: future (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork` Returns: `T`: the return value of the completed task """ return torch._C.wait(future)
_register_builtin(wait, "aten::wait")

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources