• Docs >
  • Getting Started With torchdata.nodes (beta)
Shortcuts

Getting Started With torchdata.nodes (beta)

Install torchdata with pip.

pip install torchdata>=0.10.0

Generator Example

Wrap a generator (or any iterable) to convert it to a BaseNode and get started

from torchdata.nodes import IterableWrapper, ParallelMapper, Loader

node = IterableWrapper(range(10))
node = ParallelMapper(node, map_fn=lambda x: x**2, num_workers=3, method="thread")
loader = Loader(node)
result = list(loader)
print(result)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Sampler Example

Samplers are still supported, and you can use your existing torch.utils.data.Dataset's. See Migrating to torchdata.nodes from torch.utils.data for an in-depth example.

import torch.utils.data
from torchdata.nodes import SamplerWrapper, ParallelMapper, Loader


class SquaredDataset(torch.utils.data.Dataset):
    def __getitem__(self, i: int) -> int:
        return i**2
    def __len__(self):
        return 10

dataset = SquaredDataset()
sampler = RandomSampler(dataset)

# For fine-grained control of iteration order, define your own sampler
node = SamplerWrapper(sampler)
# Simply apply dataset's __getitem__ as a map function to the indices generated from sampler
node = ParallelMapper(node, map_fn=dataset.__getitem__, num_workers=3, method="thread")
# Loader is used to convert a node (iterator) into an Iterable that may be reused for multi epochs
loader = Loader(node)
print(list(loader))
# [25, 36, 9, 49, 0, 81, 4, 16, 64, 1]
print(list(loader))
# [0, 4, 1, 64, 49, 25, 9, 16, 81, 36]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources