Attention
June 2024 Status Update: Removing DataPipes and DataLoader V2
We are re-focusing the torchdata repo to be an iterative enhancement of torch.utils.data.DataLoader. We do not plan on continuing development or maintaining the [DataPipes] and [DataLoaderV2] solutions, and they will be removed from the torchdata repo. We’ll also be revisiting the DataPipes references in pytorch/pytorch. In release torchdata==0.8.0 (July 2024) they will be marked as deprecated, and in 0.9.0 (Oct 2024) they will be deleted. Existing users are advised to pin to torchdata==0.8.0 or an older version until they are able to migrate away. Subsequent releases will not include DataPipes or DataLoaderV2. Please reach out if you suggestions or comments (please use this issue for feedback)
ParquetDataFrameLoader¶
- class torchdata.datapipes.iter.ParquetDataFrameLoader(source_dp: IterDataPipe[str], dtype=None, columns: Optional[List[str]] = None, device: str = '', use_threads: bool = False)¶
Takes in paths to Parquet files and return a TorchArrow DataFrame for each row group within a Parquet file (functional name:
load_parquet_as_df
).- Parameters:
source_dp – source DataPipe containing paths to the Parquet files
columns – List of str that specifies the column names of the DataFrame
use_threads – if
True
, Parquet reader will perform multi-threaded column readsdtype – specify the TorchArrow dtype for the DataFrame, use
torcharrow.dtypes.DType
device – specify the device on which the DataFrame will be stored
Example
>>> from torchdata.datapipes.iter import FileLister >>> import torcharrow.dtypes as dt >>> DTYPE = dt.Struct([dt.Field("Values", dt.int32)]) >>> source_dp = FileLister(".", masks="df*.parquet") >>> parquet_df_dp = source_dp.load_parquet_as_df(dtype=DTYPE) >>> list(parquet_df_dp)[0] index Values ------- -------- 0 0 1 1 2 2 dtype: Struct([Field('Values', int32)]), count: 3, null_count: 0