FlatMapper¶
- class torchdata.datapipes.iter.FlatMapper(datapipe: IterDataPipe, fn: Optional[Callable] = None, input_col=None)¶
Applies a function over each item from the source DataPipe, then flattens the outputs to a single, unnested IterDataPipe (functional name:
flatmap
).Note
The output from
fn
must be a Sequence. Otherwise, an error will be raised. Iffn
isNone
, source DataPipe will be just flattened vertically, provided that items can be unpacked.- Parameters:
datapipe – Source IterDataPipe
fn – the function to be applied to each element in the DataPipe, the output must be a Sequence
input_col –
Index or indices of data which
fn
is applied, such as:None
as default to applyfn
to the data directly.Integer(s) is/are used for list/tuple.
Key(s) is/are used for dict.
Example
>>> from torchdata.datapipes.iter import IterableWrapper >>> def fn(e): >>> return [e, e * 10] >>> source_dp = IterableWrapper(list(range(5))) >>> flatmapped_dp = source_dp.flatmap(fn) >>> list(flatmapped_dp) [0, 0, 1, 10, 2, 20, 3, 30, 4, 40] >>> >>> source_dp = IterableWrapper([[1, 2, 3], [4, 5, 6]]) >>> flatmapped_dp = source_dp.flatmap() >>> list(flatmapped_dp) [1, 2, 3, 4, 5, 6]