• Docs >
  • Dynamo Compile Advanced Usage
Shortcuts

Dynamo Compile Advanced Usage

This interactive script is intended as an overview of the process by which torch_tensorrt.dynamo.compile works, and how it integrates with the new torch.compile API.

Imports and Model Definition

import torch
from torch_tensorrt.dynamo.backend import create_backend
from torch_tensorrt.fx.lower_setting import LowerPrecision
# We begin by defining a model
class Model(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.relu = torch.nn.ReLU()

    def forward(self, x: torch.Tensor, y: torch.Tensor):
        x_out = self.relu(x)
        y_out = self.relu(y)
        x_y_out = x_out + y_out
        return torch.mean(x_y_out)

Compilation with torch.compile Using Default Settings

# Define sample float inputs and initialize model
sample_inputs = [torch.rand((5, 7)).cuda(), torch.rand((5, 7)).cuda()]
model = Model().eval().cuda()
# Next, we compile the model using torch.compile
# For the default settings, we can simply call torch.compile
# with the backend "tensorrt", and run the model on an
# input to cause compilation, as so:
optimized_model = torch.compile(model, backend="tensorrt")
optimized_model(*sample_inputs)

Compilation with torch.compile Using Custom Settings

# Define sample half inputs and initialize model
sample_inputs_half = [
    torch.rand((5, 7)).half().cuda(),
    torch.rand((5, 7)).half().cuda(),
]
model_half = Model().eval().cuda()
# If we want to customize certain options in the backend,
# but still use the torch.compile call directly, we can call the
# convenience/helper function create_backend to create a custom backend
# which has been pre-populated with certain keys
custom_backend = create_backend(
    lower_precision=LowerPrecision.FP16,
    debug=True,
    min_block_size=2,
    torch_executed_ops={},
)

# Run the model on an input to cause compilation, as so:
optimized_model_custom = torch.compile(model_half, backend=custom_backend)
optimized_model_custom(*sample_inputs_half)

Cleanup

# Finally, we use Torch utilities to clean up the workspace
torch._dynamo.reset()

with torch.no_grad():
    torch.cuda.empty_cache()

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources