Source code for fbgemm_gpu.split_table_batched_embeddings_ops_inference
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
# pyre-ignore-all-errors[56]
import logging
from itertools import accumulate
from typing import List, Optional, Tuple, Union
import fbgemm_gpu # noqa: F401
import torch # usort:skip
from torch import nn, Tensor # usort:skip
from fbgemm_gpu.split_embedding_configs import sparse_type_to_int, SparseType
from fbgemm_gpu.split_table_batched_embeddings_ops_common import (
BoundsCheckMode,
CacheAlgorithm,
CacheState,
construct_cache_state,
DEFAULT_SCALE_BIAS_SIZE_IN_BYTES,
EmbeddingLocation,
MAX_PREFETCH_DEPTH,
PoolingMode,
RecordCacheMetrics,
round_up,
SplitState,
)
from fbgemm_gpu.utils.loader import load_torch_module, load_torch_module_bc
try:
load_torch_module(
"//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_inference_gpu",
"//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cuda_inference",
"//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_hip_inference",
)
except Exception:
pass
try:
load_torch_module_bc(
"//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_inference_cpu",
"//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cpu_inference",
)
except Exception:
pass
import fbgemm_gpu # noqa
def rounded_row_size_in_bytes(
dim: int,
weight_ty: SparseType,
row_alignment: int,
scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES,
) -> int:
r = unpadded_row_size_in_bytes(dim, weight_ty, scale_bias_size_in_bytes)
# align each row to 16-byte boundaries.
return round_up(r, row_alignment)
def unpadded_row_size_in_bytes(
dim: int,
weight_ty: SparseType,
scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES,
) -> int:
r = {
SparseType.FP32.value: dim * 4,
SparseType.FP16.value: dim * 2,
SparseType.FP8.value: dim,
SparseType.INT8.value: dim + scale_bias_size_in_bytes,
SparseType.INT4.value: dim // 2 + scale_bias_size_in_bytes,
SparseType.INT2.value: dim // 4 + scale_bias_size_in_bytes,
}[weight_ty.value]
return r
def align_to_cacheline(a: int) -> int:
# align each table to 128b cache line boundary.
return round_up(a, 128)
def nbit_construct_split_state(
embedding_specs: List[Tuple[str, int, int, SparseType, EmbeddingLocation]],
cacheable: bool,
row_alignment: int,
scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES,
cacheline_alignment: bool = True,
) -> SplitState:
placements = torch.jit.annotate(List[EmbeddingLocation], [])
offsets = torch.jit.annotate(List[int], [])
dev_size = 0
host_size = 0
uvm_size = 0
for _, num_embeddings, embedding_dim, weight_ty, location in embedding_specs:
embedding_dim = rounded_row_size_in_bytes(
embedding_dim, weight_ty, row_alignment, scale_bias_size_in_bytes
)
state_size = num_embeddings * embedding_dim
if cacheline_alignment:
state_size = align_to_cacheline(state_size)
if location == EmbeddingLocation.HOST:
placements.append(EmbeddingLocation.HOST)
offsets.append(host_size)
host_size += state_size
elif location == EmbeddingLocation.DEVICE or location == EmbeddingLocation.MTIA:
placements.append(location)
offsets.append(dev_size)
dev_size += state_size
else:
if cacheable and location == EmbeddingLocation.MANAGED_CACHING:
placements.append(EmbeddingLocation.MANAGED_CACHING)
else:
placements.append(EmbeddingLocation.MANAGED)
offsets.append(uvm_size)
uvm_size += state_size
assert len(placements) == len(offsets)
return SplitState(
dev_size=dev_size,
host_size=host_size,
uvm_size=uvm_size,
placements=placements,
offsets=offsets,
)
def random_quant_scaled_tensor(
shape: torch.Size,
device: torch.device,
output_tensor: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if output_tensor is not None:
return torch.randint(
0,
255,
size=shape,
out=output_tensor,
dtype=torch.uint8,
device=device,
)
else:
return torch.randint(
0,
255,
size=shape,
dtype=torch.uint8,
device=device,
)
@torch.fx.wrap
def inputs_to_device(
indices: torch.Tensor,
offsets: torch.Tensor,
per_sample_weights: Optional[torch.Tensor],
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
if device.type == "meta":
return indices, offsets, per_sample_weights
non_blocking = device.type != "cpu"
if indices.device != device:
indices = indices.to(device, non_blocking=non_blocking)
if offsets.device != device:
offsets = offsets.to(device, non_blocking=non_blocking)
if per_sample_weights is not None and per_sample_weights.device != device:
per_sample_weights = per_sample_weights.to(device, non_blocking=non_blocking)
return indices, offsets, per_sample_weights
# pyre-fixme[13]: Attribute `cache_miss_counter` is never initialized.
[docs]class IntNBitTableBatchedEmbeddingBagsCodegen(nn.Module):
"""
Table-batched version of nn.EmbeddingBag(sparse=False)
Inference version, with support for FP32/FP16/FP8/INT8/INT4/INT2 weights
Args:
embedding_specs (List[Tuple[int, int, EmbeddingLocation, ComputeDevice]]):
A list of embedding specifications. Each spec describes a
specification of a physical embedding table. Each one is a tuple of
number of embedding rows, embedding dimension (must be a multiple of
4), table placement (`EmbeddingLocation`), and compute device
(`ComputeDevice`).
Available `EmbeddingLocation` options are
(1) `DEVICE` = placing an embedding table in the GPU global memory
(HBM)
(2) `MANAGED` = placing an embedding in the unified virtual memory
(accessible from both GPU and CPU)
(3) `MANAGED_CACHING` = placing an embedding table in the unified
virtual memory and using the GPU global memory (HBM) as a cache
(4) `HOST` = placing an embedding table in the CPU memory (DRAM)
(5) `MTIA` = placing an embedding table in the MTIA memory
Available `ComputeDevice` options are
(1) `CPU` = performing table lookup on CPU
(2) `CUDA` = performing table lookup on GPU
(3) `MTIA` = performing table lookup on MTIA
feature_table_map (Optional[List[int]] = None): An optional list that
specifies feature-table mapping. feature_table_map[i] indicates the
physical embedding table that feature i maps to.
index_remapping (Optional[List[Tensor]] = None): Index remapping for pruning
pooling_mode (PoolingMode = PoolingMode.SUM): Pooling mode. Available
`PoolingMode` options are
(1) `SUM` = Sum pooling
(2) `MEAN` = Mean pooling
(3) `NONE` = No pooling (sequence embedding)
device (Optional[Union[str, int, torch.device]] = None): The current
device to place tensors on
bounds_check_mode (BoundsCheckMode = BoundsCheckMode.WARNING): Input
checking mode. Available `BoundsCheckMode` options are
(1) `NONE` = skip bounds check
(2) `FATAL` = throw an error when encountering an invalid
index/offset
(3) `WARNING` = print a warning message when encountering an
invalid index/offset and fix it (setting an invalid index to
zero and adjusting an invalid offset to be within the bound)
(4) `IGNORE` = silently fix an invalid index/offset (setting an
invalid index to zero and adjusting an invalid offset to be
within the bound)
weight_lists (Optional[List[Tuple[Tensor, Optional[Tensor]]]] = None):
[T]
pruning_hash_load_factor (float = 0.5):
Load factor for pruning hash
use_array_for_index_remapping (bool = True):
If True, use array for index remapping. Otherwise, use hash map.
output_dtype (SparseType = SparseType.FP16): The data type of an output
tensor.
cache_algorithm (CacheAlgorithm = CacheAlgorithm.LRU): The cache
algorithm (used when `EmbeddingLocation` is set to
`MANAGED_CACHING`). Options are
(1) `LRU` = least recently used
(2) `LFU` = least frequently used
cache_load_factor (float = 0.2): A factor used for determining the
cache capacity when `EmbeddingLocation.MANAGED_CACHING` is used.
The cache capacity is `cache_load_factor` * the total number of
rows in all embedding tables
cache_sets (int = 0): The number of cache sets (used when
`EmbeddingLocation` is set to `MANAGED_CACHING`)
cache_reserved_memory (float = 0.0): The amount of memory reserved in
HBM for non-cache purpose (used when `EmbeddingLocation` is set to
`MANAGED_CACHING`).
enforce_hbm (bool = False): If True, place all weights/momentums in HBM
when using `EmbeddingLocation.MANAGED_CACHING`
record_cache_metrics (Optional[RecordCacheMetrics] = None): Record
a number of hits, a number of requests, etc if
`RecordCacheMetrics.record_cache_miss_counter` is True and record
the similar metrics table-wise if
`RecordCacheMetrics.record_tablewise_cache_miss is True`
gather_uvm_cache_stats (Optional[bool] = False): If True, collect the
cache statistics when `EmbeddingLocation` is set to
`MANAGED_CACHING`
row_alignment (Optional[int] = None): Row alignment
fp8_exponent_bits (Optional[int] = None): Exponent bits when using FP8
fp8_exponent_bias (Optional[int] = None): Exponent bias when using FP8
cache_assoc (int = 32): Number of ways for cache
scale_bias_size_in_bytes (int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES): Size
of scale and bias in bytes
cacheline_alignment (bool = True): If True, align each table to 128b
cache line boundary
uvm_host_mapped (bool = False): If True, allocate every UVM tensor
using `malloc` + `cudaHostRegister`. Otherwise use
`cudaMallocManaged`
reverse_qparam (bool = False): If True, load `qparams` at end of each
row. Otherwise, load `qparams` at begnning of each row.
feature_names_per_table (Optional[List[List[str]]] = None): An optional
list that specifies feature names per table. `feature_names_per_table[t]`
indicates the feature names of table `t`.
indices_dtype (torch.dtype = torch.int32): The expected dtype of the
indices tensor that will be passed to the `forward()` call. This
information will be used to construct the remap_indices array/hash.
Options are `torch.int32` and `torch.int64`.
"""
embedding_specs: List[Tuple[str, int, int, SparseType, EmbeddingLocation]]
record_cache_metrics: RecordCacheMetrics
# pyre-fixme[13]: Attribute `cache_miss_counter` is never initialized.
cache_miss_counter: torch.Tensor
# pyre-fixme[13]: Attribute `uvm_cache_stats` is never initialized.
uvm_cache_stats: torch.Tensor
# pyre-fixme[13]: Attribute `local_uvm_cache_stats` is never initialized.
local_uvm_cache_stats: torch.Tensor
# pyre-fixme[13]: Attribute `weights_offsets` is never initialized.
weights_offsets: torch.Tensor
# pyre-fixme[13]: Attribute `weights_placements` is never initialized.
weights_placements: torch.Tensor
def __init__( # noqa C901
self,
embedding_specs: List[
Tuple[str, int, int, SparseType, EmbeddingLocation]
], # tuple of (feature_names, rows, dims, SparseType, EmbeddingLocation/placement)
feature_table_map: Optional[List[int]] = None, # [T]
index_remapping: Optional[List[Tensor]] = None,
pooling_mode: PoolingMode = PoolingMode.SUM,
device: Optional[Union[str, int, torch.device]] = None,
bounds_check_mode: BoundsCheckMode = BoundsCheckMode.WARNING,
weight_lists: Optional[List[Tuple[Tensor, Optional[Tensor]]]] = None,
pruning_hash_load_factor: float = 0.5,
use_array_for_index_remapping: bool = True,
output_dtype: SparseType = SparseType.FP16,
cache_algorithm: CacheAlgorithm = CacheAlgorithm.LRU,
cache_load_factor: float = 0.2,
cache_sets: int = 0,
cache_reserved_memory: float = 0.0,
enforce_hbm: bool = False, # place all weights/momentums in HBM when using cache
record_cache_metrics: Optional[RecordCacheMetrics] = None,
gather_uvm_cache_stats: Optional[bool] = False,
row_alignment: Optional[int] = None,
fp8_exponent_bits: Optional[int] = None,
fp8_exponent_bias: Optional[int] = None,
cache_assoc: int = 32,
scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES,
cacheline_alignment: bool = True,
uvm_host_mapped: bool = False, # True to use cudaHostAlloc; False to use cudaMallocManaged.
reverse_qparam: bool = False, # True to load qparams at end of each row; False to load qparam at begnning of each row.
feature_names_per_table: Optional[List[List[str]]] = None,
indices_dtype: torch.dtype = torch.int32, # Used for construction of the remap_indices tensors. Should match the dtype of the indices passed in the forward() call (INT32 or INT64).
) -> None: # noqa C901 # tuple of (rows, dims,)
super(IntNBitTableBatchedEmbeddingBagsCodegen, self).__init__()
# 64 for AMD
if cache_assoc == 32 and torch.version.hip is not None:
cache_assoc = 64
if device is None:
self.current_device: torch.device = torch.device(
torch.cuda.current_device()
)
elif isinstance(device, torch.device):
self.current_device = device
else:
self.current_device = torch.device(device)
self.use_cpu: bool = self.current_device.type == "cpu"
self.scale_bias_size_in_bytes = scale_bias_size_in_bytes
self.pooling_mode = pooling_mode
self.bounds_check_mode_int: int = bounds_check_mode.value
self.embedding_specs = embedding_specs
self.output_dtype: int = output_dtype.as_int()
self.uvm_host_mapped = uvm_host_mapped
self.feature_names_per_table = feature_names_per_table
self.indices_dtype = indices_dtype
# (feature_names, rows, dims, weights_tys, locations) = zip(*embedding_specs)
# Pyre workaround
self.feature_names: List[str] = [e[0] for e in embedding_specs]
rows: List[int] = [e[1] for e in embedding_specs]
dims: List[int] = [e[2] for e in embedding_specs]
weights_tys: List[SparseType] = [e[3] for e in embedding_specs]
locations: List[EmbeddingLocation] = [e[4] for e in embedding_specs]
# if target device is meta then we set use_cpu based on the embedding location
# information in embedding_specs.
if self.current_device.type == "meta":
self.use_cpu = all(loc == EmbeddingLocation.HOST for loc in locations)
if row_alignment is None:
self.row_alignment: int = 1 if self.use_cpu else 16
else:
self.row_alignment = row_alignment
if record_cache_metrics is not None:
self.record_cache_metrics = record_cache_metrics
else:
self.record_cache_metrics = RecordCacheMetrics(False, False)
self.gather_uvm_cache_stats = gather_uvm_cache_stats
# Define the size of uvm cache stats as class variable
# to make it work with torch jit script.
self.uvm_cache_stats_size = 6
# 0: N_calls, 1: N_requested_indices, 2: N_unique_indices, 3: N_unique_misses,
# 4: N_conflict_unique_misses, 5: N_conflict_misses
# mixed D is not supported by no bag kernels
mixed_D = not all(d == dims[0] for d in dims)
if mixed_D:
assert (
self.pooling_mode != PoolingMode.NONE
), "Mixed dimension tables are only supported for pooling tables."
assert not self.use_cpu or all(
loc == EmbeddingLocation.HOST for loc in locations
), "CPU device requires EmbeddingLocation.HOST for location!"
assert self.use_cpu or all(
loc != EmbeddingLocation.HOST for loc in locations
), "EmbeddingLocation.HOST doesn't work for CUDA device!"
T_ = len(self.embedding_specs)
assert T_ > 0
self.feature_table_map: List[int] = (
feature_table_map if feature_table_map is not None else list(range(T_))
)
T = len(self.feature_table_map)
assert T_ <= T
table_has_feature = [False] * T_
for t in self.feature_table_map:
table_has_feature[t] = True
assert all(table_has_feature), "Each table must have at least one feature!"
D_offsets = [dims[t] for t in self.feature_table_map]
D_offsets = [0] + list(accumulate(D_offsets))
self.total_D: int = D_offsets[-1]
for dim, weight_ty in zip(dims, weights_tys):
if not weight_ty.is_float():
assert (
dim % (8 / weight_ty.bit_rate()) == 0
), f"For quantized types we need to at least pack at byte granularity, dim: {dim}, weight_ty: {weight_ty}"
def max_ty_D(ty: SparseType) -> int:
return max(
[
dim
for dim, weight_ty in zip(dims, weights_tys)
if weight_ty == ty or weight_ty.value == ty.value
],
default=0,
)
self.max_int2_D: int = max_ty_D(SparseType.INT2)
self.max_int4_D: int = max_ty_D(SparseType.INT4)
self.max_int8_D: int = max_ty_D(SparseType.INT8)
self.max_float8_D: int = max_ty_D(SparseType.FP8)
self.max_float16_D: int = max_ty_D(SparseType.FP16)
self.max_float32_D: int = max_ty_D(SparseType.FP32)
self.register_buffer(
"D_offsets",
torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32),
)
assert self.D_offsets.numel() == T + 1
self.register_buffer(
"rows_per_table",
torch.tensor(
[rows[t] for t in self.feature_table_map],
device=self.current_device,
dtype=torch.int64,
),
)
self.register_buffer(
"bounds_check_warning",
torch.tensor([0], device=self.current_device, dtype=torch.int64),
)
weights_tys_int = [weights_tys[t].as_int() for t in self.feature_table_map]
self.register_buffer(
"weights_tys",
torch.tensor(
weights_tys_int, device=self.current_device, dtype=torch.uint8
),
)
self.weight_initialized: bool = False
self.weights_dev: torch.Tensor = torch.zeros(
0,
device=self.current_device,
dtype=torch.uint8,
)
self.weights_host: torch.Tensor = torch.zeros(
0, device=self.current_device, dtype=torch.uint8
)
self.weights_uvm: torch.Tensor = torch.empty(
0, device=self.current_device, dtype=torch.uint8
)
cached_dims = [
rounded_row_size_in_bytes(
embedding_spec[2], embedding_spec[3], 16, self.scale_bias_size_in_bytes
)
for embedding_spec in self.embedding_specs
if embedding_spec[4] == EmbeddingLocation.MANAGED_CACHING
]
self.max_D_cache: int = max(cached_dims) if len(cached_dims) > 0 else 0
self.initialize_physical_weights_placements_and_offsets(cacheline_alignment)
self.enforce_hbm: bool = enforce_hbm
self.reverse_qparam = reverse_qparam
# Assign weights after weights and weights_offsets are initialized.
if weight_lists:
self._apply_split(
self.dev_size,
self.host_size,
self.uvm_size,
self.weights_physical_placements,
self.weights_physical_offsets,
self.enforce_hbm,
)
self.assign_embedding_weights(weight_lists)
# Handle index remapping for embedding pruning.
# All buffers are int64 in order to support both int32 and int64 indices.
self.register_buffer(
"index_remappings_array_offsets",
torch.empty(0, device=self.current_device, dtype=torch.int64),
)
self.register_buffer(
"index_remappings_array",
torch.empty(0, device=self.current_device, dtype=self.indices_dtype),
)
self.register_buffer(
"index_remapping_hash_table_offsets",
torch.empty(0, device=self.current_device, dtype=torch.int64),
)
self.register_buffer(
"index_remapping_hash_table",
torch.empty(0, device=self.current_device, dtype=self.indices_dtype),
)
self.register_buffer(
"original_rows_per_table",
torch.empty(0, device=self.current_device, dtype=torch.int64),
)
# pyre-fixme[4]: Attribute must be annotated.
self.index_remapping_hash_table_cpu = None
if index_remapping:
self.set_index_remappings(
index_remapping, pruning_hash_load_factor, use_array_for_index_remapping
)
# Currently only support cache_precision == embedding_precision.
# Both are represented as uint8_t
cache_state = construct_cache_state(rows, locations, self.feature_table_map)
if self.record_cache_metrics.record_tablewise_cache_miss:
num_tables = len(cache_state.cache_hash_size_cumsum) - 1
self.register_buffer(
"table_wise_cache_miss",
torch.zeros(
num_tables,
device=self.current_device,
dtype=torch.int64,
),
)
# NOTE: make TorchScript work!
else:
self.register_buffer(
"table_wise_cache_miss",
torch.zeros(
0,
device=self.current_device,
dtype=torch.int64,
),
)
self.cache_assoc = cache_assoc
self._apply_cache_state(
cache_state,
cache_algorithm,
cache_load_factor,
cache_sets,
cache_reserved_memory,
)
if self.max_float8_D > 0:
default_config = SparseType.FP8.default_config()
self.fp8_exponent_bits: int = (
default_config.get("exponent_bits")
if fp8_exponent_bits is None
else fp8_exponent_bits
)
self.fp8_exponent_bias: int = (
default_config.get("exponent_bias")
if fp8_exponent_bias is None
else fp8_exponent_bias
)
else:
self.fp8_exponent_bits = -1
self.fp8_exponent_bias = -1
def get_cache_miss_counter(self) -> Tensor:
# cache_miss_counter[0]: cache_miss_forward_count which records the total number of forwards which has at least one cache miss
# cache_miss_counter[1]: unique_cache_miss_count which records to total number of unique (dedup) cache misses
# cache_miss_counter[2]: total number of unique (dedup) access count
# cache_miss_counter[3]: total number of non-dedup access count
# How to get cache miss ratio
# cache miss ratio (# of missed entries / # of unique requests): ( cache_miss_counter[1] / cache_miss_counter[2] )
# cache miss ratio (# of missed entries / # of total access): ( cache_miss_counter[1] / cache_miss_counter[3] )
assert (
self.record_cache_metrics.record_cache_miss_counter
), "record_cache_miss_counter should be true to access counter values"
return self.cache_miss_counter
@torch.jit.export
def get_table_wise_cache_miss(self) -> Tensor:
assert (
self.record_cache_metrics.record_tablewise_cache_miss
), "record_tablewise_cache_miss should be true to access counter values"
# table_wise_cache_miss contains all the cache miss count for each table in this embedding table object:
return self.table_wise_cache_miss
@torch.jit.export
def get_feature_num_per_table(self) -> List[int]:
if self.feature_names_per_table is None:
return []
return [len(feature_names) for feature_names in self.feature_names_per_table]
def reset_cache_miss_counter(self) -> None:
assert (
self.record_cache_metrics.record_cache_miss_counter
), "record_cache_miss_counter should be true to access counter values"
self.cache_miss_counter = torch.tensor(
[0, 0, 0, 0], device=self.current_device, dtype=torch.int64
)
def reset_uvm_cache_stats(self) -> None:
assert (
self.gather_uvm_cache_stats
), "gather_uvm_cache_stats should be set to true to access uvm cache stats."
self.uvm_cache_stats.zero_()
self.local_uvm_cache_stats.zero_()
def print_cache_miss_counter(self) -> None:
assert (
self.record_cache_metrics.record_cache_miss_counter
), "record_cache_miss_counter should be true to access counter values"
logging.info(
f"\n"
f"Miss counter value [0] - # of miss occured iters : {self.cache_miss_counter[0]}, \n"
f"Miss counter value [1] - # of unique misses : {self.cache_miss_counter[1]}, \n"
f"Miss counter value [2] - # of unique requested indices : {self.cache_miss_counter[2]}, \n"
f"Miss counter value [3] - # of total requested indices : {self.cache_miss_counter[3]}, "
)
logging.info(
f"unique_miss_rate using counter : {self.cache_miss_counter[1] / self.cache_miss_counter[2]}, \n"
)
logging.info(
f"total_miss_rate using counter : {self.cache_miss_counter[1] / self.cache_miss_counter[3]}, \n"
)
def get_uvm_cache_stats(self) -> Tensor:
assert (
self.gather_uvm_cache_stats
), "gather_uvm_cache_stats should be set to true to access uvm cache stats."
return self.uvm_cache_stats
def print_uvm_cache_stats(self) -> None:
assert (
self.gather_uvm_cache_stats
), "gather_uvm_cache_stats should be set to true to access uvm cache stats."
uvm_cache_stats = self.uvm_cache_stats.tolist()
logging.info(
f"N_called: {uvm_cache_stats[0]}\n"
f"N_requested_indices: {uvm_cache_stats[1]}\n"
f"N_unique_indices: {uvm_cache_stats[2]}\n"
f"N_unique_misses: {uvm_cache_stats[3]}\n"
f"N_conflict_unique_misses: {uvm_cache_stats[4]}\n"
f"N_conflict_misses: {uvm_cache_stats[5]}\n"
)
if uvm_cache_stats[1]:
logging.info(
f"unique indices / requested indices: {uvm_cache_stats[2] / uvm_cache_stats[1]}\n"
f"unique misses / requested indices: {uvm_cache_stats[3] / uvm_cache_stats[1]}\n"
)
@torch.jit.export
def prefetch(self, indices: Tensor, offsets: Tensor) -> None:
self.timestep_counter.increment()
self.timestep_prefetch_size.increment()
# pyre-fixme[29]: `Union[(self: TensorBase) -> int, Module, Tensor]` is not
# a function.
if not self.lxu_cache_weights.numel():
return
linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices(
self.cache_hash_size_cumsum,
indices,
offsets,
)
if (
self.record_cache_metrics.record_cache_miss_counter
or self.record_cache_metrics.record_tablewise_cache_miss
):
lxu_cache_locations = (
torch.ops.fbgemm.lxu_cache_lookup(
linear_cache_indices,
self.lxu_cache_state,
self.total_cache_hash_size,
)
if self.cache_assoc in [32, 64]
else torch.ops.fbgemm.direct_mapped_lxu_cache_lookup(
linear_cache_indices,
self.lxu_cache_state,
self.total_cache_hash_size,
)
)
if self.record_cache_metrics.record_cache_miss_counter:
self._update_cache_miss_counter(
lxu_cache_locations, linear_cache_indices
)
if self.record_cache_metrics.record_tablewise_cache_miss:
self._update_tablewise_cache_miss(
lxu_cache_locations, linear_cache_indices, offsets
)
if self.cache_assoc in [32, 64]:
# 64 for AMD
self.prefetch_32way(linear_cache_indices)
elif self.cache_assoc == 1:
self.prefetch_1way(linear_cache_indices)
else:
raise ValueError(f"{self.cache_assoc} not in [1, 32, 64]")
def prefetch_32way(self, linear_cache_indices: Tensor) -> None:
if self.cache_algorithm == CacheAlgorithm.LRU:
torch.ops.fbgemm.lru_cache_populate_byte(
self.weights_uvm,
self.cache_hash_size_cumsum,
self.total_cache_hash_size,
self.cache_index_table_map,
self.weights_offsets,
self.weights_tys,
self.D_offsets,
linear_cache_indices,
self.lxu_cache_state,
self.lxu_cache_weights,
self.timestep_counter.get(),
self.lxu_state,
16, # row_alignment; using default value.
self.gather_uvm_cache_stats,
self.local_uvm_cache_stats,
)
elif self.cache_algorithm == CacheAlgorithm.LFU:
torch.ops.fbgemm.lfu_cache_populate_byte(
self.weights_uvm,
self.cache_hash_size_cumsum,
self.total_cache_hash_size,
self.cache_index_table_map,
self.weights_offsets,
self.weights_tys,
self.D_offsets,
linear_cache_indices,
self.lxu_cache_state,
self.lxu_cache_weights,
self.lxu_state,
)
assert (
self.lxu_cache_locations_list.size() < self.max_prefetch_depth
), f"self.lxu_cache_locations_list has grown to size: {self.lxu_cache_locations_list.size()}, this exceeds the maximum: {self.max_prefetch_depth}. This probably indicates an error in logic where prefetch() is being called more frequently than forward()"
self.lxu_cache_locations_list.push(
torch.ops.fbgemm.lxu_cache_lookup(
linear_cache_indices,
self.lxu_cache_state,
self.total_cache_hash_size,
self.gather_uvm_cache_stats,
self.local_uvm_cache_stats,
)
)
if self.gather_uvm_cache_stats:
self._accumulate_uvm_cache_stats()
def prefetch_1way(self, linear_cache_indices: Tensor) -> None:
if self.cache_algorithm == CacheAlgorithm.LRU:
torch.ops.fbgemm.direct_mapped_lru_cache_populate_byte(
self.weights_uvm,
self.cache_hash_size_cumsum,
self.total_cache_hash_size,
self.cache_index_table_map,
self.weights_offsets,
self.weights_tys,
self.D_offsets,
linear_cache_indices,
self.lxu_cache_state,
self.lxu_cache_weights,
self.timestep_counter.get(),
self.lxu_state,
self.lxu_cache_miss_timestamp,
16, # row_alignment; using default value.
self.gather_uvm_cache_stats,
self.local_uvm_cache_stats,
)
else:
raise ValueError("Direct Mapped for LRU only")
assert (
self.lxu_cache_locations_list.size() < self.max_prefetch_depth
), f"self.lxu_cache_locations_list has grown to size: {self.lxu_cache_locations_list.size()}, this exceeds the maximum: {self.max_prefetch_depth}. This probably indicates an error in logic where prefetch() is being called more frequently than forward()"
self.lxu_cache_locations_list.push(
torch.ops.fbgemm.direct_mapped_lxu_cache_lookup(
linear_cache_indices,
self.lxu_cache_state,
self.total_cache_hash_size,
self.gather_uvm_cache_stats,
self.local_uvm_cache_stats,
)
)
if self.gather_uvm_cache_stats:
self._accumulate_uvm_cache_stats()
def _accumulate_uvm_cache_stats(self) -> None:
# Accumulate local_uvm_cache_stats (int32) into uvm_cache_stats (int64).
# We may wanna do this accumulation atomically, but as it's only for monitoring,
# slightly inaccurate result may be acceptable.
self.uvm_cache_stats = torch.add(
self.uvm_cache_stats, self.local_uvm_cache_stats
)
self.local_uvm_cache_stats.zero_()
def _update_cache_miss_counter(
self,
lxu_cache_locations: Tensor,
linear_cache_indices: Tensor,
) -> None:
CACHE_MISS = torch.tensor([-1], device=self.current_device, dtype=torch.int32)
CACHE_HIT = torch.tensor([-2], device=self.current_device, dtype=torch.int32)
cache_missed_locations = torch.where(
lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT
)
unique_ids_list = torch.unique(cache_missed_locations)
unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1)
miss_count = torch.sum(unique_ids_count_list)
self.cache_miss_counter[0] += (miss_count > 0).to(torch.int64)
self.cache_miss_counter[1] += miss_count
# Number of unique requests
assert (
len(linear_cache_indices.size()) == 1
), f"linear_cache_indices should be 1-D was {len(linear_cache_indices.size())}-D"
assert (
self.cache_miss_counter.size()[0] == 4
), f"self.cache_miss_counter should be 4-D was {self.cache_miss_counter.size()[0]}-D"
self.cache_miss_counter[2] += torch.unique(linear_cache_indices).size()[0]
# Number of total requests
self.cache_miss_counter[3] += linear_cache_indices.size()[0]
def _update_tablewise_cache_miss(
self,
lxu_cache_locations: Tensor,
linear_cache_indices: Tensor,
offsets: Tensor,
) -> None:
CACHE_MISS = torch.tensor([-1], device=self.current_device, dtype=torch.int32)
CACHE_HIT = torch.tensor([-2], device=self.current_device, dtype=torch.int32)
# pyre-fixme[6]: For 1st argument expected
# `pyre_extensions.PyreReadOnly[Sized]` but got `Union[Module, Tensor]`.
num_tables = len(self.cache_hash_size_cumsum) - 1
num_offsets_per_table = (len(offsets) - 1) // num_tables
cache_missed_locations = torch.where(
lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT
)
for i in range(num_tables):
start = offsets[i * num_offsets_per_table]
end = offsets[(i + 1) * num_offsets_per_table]
current_cache_missed_locations = cache_missed_locations[start:end]
unique_ids_list = torch.unique(current_cache_missed_locations)
unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1)
miss_count = torch.sum(unique_ids_count_list)
self.table_wise_cache_miss[i] += miss_count
[docs] def forward(
self,
indices: Tensor,
offsets: Tensor,
per_sample_weights: Optional[Tensor] = None,
) -> Tensor:
assert (
self.weight_initialized
), "weight needs to be initialized before forward function"
indices, offsets, per_sample_weights = inputs_to_device(
indices, offsets, per_sample_weights, self.bounds_check_warning.device
)
# First bound check: check if the indices/offsets are within the boundary
# of the original embedding rows before pruning.
# Note that this is only applied when we enable pruning (if the perf becomes
# an issue, we can fuse it inside the remapping kernel).
if (
self.index_remapping_hash_table_cpu is not None
or self.index_remapping_hash_table.numel() > 0
or self.index_remappings_array.numel() > 0
):
if self.bounds_check_mode_int != BoundsCheckMode.NONE.value:
torch.ops.fbgemm.bounds_check_indices(
self.original_rows_per_table,
indices,
offsets,
self.bounds_check_mode_int,
self.bounds_check_warning,
per_sample_weights,
)
# Index remapping changes input indices, and some of them becomes -1 (prunned rows).
# Hence, remapping should be done before prefetch and emb lookup
# so that these operations are with the remapped indices.
if self.index_remapping_hash_table_cpu is not None:
indices = self.index_remapping_hash_table_cpu.lookup(indices, offsets)
elif self.index_remapping_hash_table.numel() > 0:
# Convert from raw indices to pruned indices
indices = torch.ops.fbgemm.pruned_hashmap_lookup(
indices,
offsets,
self.index_remapping_hash_table,
self.index_remapping_hash_table_offsets,
)
elif self.index_remappings_array.numel() > 0:
indices = torch.ops.fbgemm.pruned_array_lookup(
indices,
offsets,
self.index_remappings_array,
self.index_remappings_array_offsets,
)
# pyre-fixme[29]: `Union[(self: TensorBase) -> int, Module, Tensor]` is not
# a function.
if self.lxu_cache_weights.numel() > 0:
if self.timestep_prefetch_size.get() <= 0:
self.prefetch(indices, offsets)
self.timestep_prefetch_size.decrement()
lxu_cache_locations = self.lxu_cache_locations_list.pop()
# Second bound check: check if the indices/offsets are within the boundary
# of the pruned embedding rows after pruning.
# Note: we cast to int as a TorchScript workaround.
if self.bounds_check_mode_int != BoundsCheckMode.NONE.value:
torch.ops.fbgemm.bounds_check_indices(
self.rows_per_table,
indices,
offsets,
self.bounds_check_mode_int,
self.bounds_check_warning,
per_sample_weights,
)
# Note: CPU and CUDA ops use the same interface to facilitate JIT IR
# generation for CUDA/CPU. For CPU op, we don't need weights_uvm and
# weights_placements
return torch.ops.fbgemm.int_nbit_split_embedding_codegen_lookup_function(
dev_weights=self.weights_host if self.host_size > 0 else self.weights_dev,
uvm_weights=self.weights_uvm,
weights_placements=self.weights_placements,
weights_offsets=self.weights_offsets,
weights_tys=self.weights_tys,
D_offsets=self.D_offsets,
total_D=self.total_D,
max_int2_D=self.max_int2_D,
max_int4_D=self.max_int4_D,
max_int8_D=self.max_int8_D,
max_float16_D=self.max_float16_D,
max_float32_D=self.max_float32_D,
indices=indices,
offsets=offsets,
pooling_mode=int(self.pooling_mode),
indice_weights=per_sample_weights,
output_dtype=self.output_dtype,
lxu_cache_weights=self.lxu_cache_weights,
lxu_cache_locations=lxu_cache_locations,
row_alignment=self.row_alignment,
max_float8_D=self.max_float8_D,
fp8_exponent_bits=self.fp8_exponent_bits,
fp8_exponent_bias=self.fp8_exponent_bias,
)
def initialize_logical_weights_placements_and_offsets(
self,
) -> None:
assert len(self.weights_physical_offsets) == len(self.embedding_specs)
assert len(self.weights_physical_offsets) == len(
self.weights_physical_placements
)
offsets = [self.weights_physical_offsets[t] for t in self.feature_table_map]
placements = [
self.weights_physical_placements[t] for t in self.feature_table_map
]
self.weights_offsets = torch.tensor(
offsets, device=self.current_device, dtype=torch.int64
)
self.weights_placements = torch.tensor(
placements, device=self.current_device, dtype=torch.int32
)
def initialize_physical_weights_placements_and_offsets(
self,
cacheline_alignment: bool = True,
) -> None:
# Initialize physical weights placements and offsets
# and host/dev/uvm sizes
weight_split: SplitState = nbit_construct_split_state(
self.embedding_specs,
cacheable=True,
row_alignment=self.row_alignment,
scale_bias_size_in_bytes=self.scale_bias_size_in_bytes,
cacheline_alignment=cacheline_alignment,
)
self.weights_physical_placements = [t.value for t in weight_split.placements]
self.weights_physical_offsets = weight_split.offsets
self.host_size = weight_split.host_size
self.dev_size = weight_split.dev_size
self.uvm_size = weight_split.uvm_size
@torch.jit.export
def reset_weights_placements_and_offsets(
self, device: torch.device, location: int
) -> None:
# Overwrite location in embedding_specs with new location
# Use map since can't script enum call (ie. EmbeddingLocation(value))
INT_TO_EMBEDDING_LOCATION = {
EmbeddingLocation.DEVICE.value: EmbeddingLocation.DEVICE,
EmbeddingLocation.MANAGED.value: EmbeddingLocation.MANAGED,
EmbeddingLocation.MANAGED_CACHING.value: EmbeddingLocation.MANAGED_CACHING,
EmbeddingLocation.HOST.value: EmbeddingLocation.HOST,
EmbeddingLocation.MTIA.value: EmbeddingLocation.MTIA,
}
# Reset device/location denoted in embedding specs
target_location = INT_TO_EMBEDDING_LOCATION[location]
if target_location == EmbeddingLocation.MTIA:
self.scale_bias_size_in_bytes = 8
self.reset_embedding_spec_location(device, target_location)
# Initialize all physical/logical weights placements and offsets without initializing large dev weights tensor
self.initialize_physical_weights_placements_and_offsets(
cacheline_alignment=target_location != EmbeddingLocation.MTIA
)
self.initialize_logical_weights_placements_and_offsets()
def reset_embedding_spec_location(
self, device: torch.device, target_location: EmbeddingLocation
) -> None:
self.current_device = device
self.row_alignment = (
1
if target_location == EmbeddingLocation.HOST
or target_location == EmbeddingLocation.MTIA
else 16
)
self.embedding_specs = [
(spec[0], spec[1], spec[2], spec[3], target_location)
for spec in self.embedding_specs
]
[docs] @torch.jit.export
def recompute_module_buffers(self) -> None:
"""
Compute module buffers that're on meta device and are not materialized
in reset_weights_placements_and_offsets(). Currently those buffers are
`weights_tys`, `rows_per_table`, `D_offsets` and `bounds_check_warning`.
Pruning related or uvm related buffers are not computed right now.
"""
if (
self.weights_tys.device == self.current_device
or self.current_device.type == "meta"
):
return
weights_tys_int = [sparse_type_to_int(e[3]) for e in self.embedding_specs]
self.weights_tys = torch.tensor(
[weights_tys_int[t] for t in self.feature_table_map],
device=self.current_device,
dtype=torch.uint8,
)
rows = [e[1] for e in self.embedding_specs]
self.rows_per_table = torch.tensor(
[rows[t] for t in self.feature_table_map],
device=self.current_device,
dtype=torch.int64,
)
dims = [e[2] for e in self.embedding_specs]
D_offsets_list = [0]
for t in self.feature_table_map:
D_offsets_list.append(dims[t] + D_offsets_list[-1])
self.D_offsets = torch.tensor(
D_offsets_list, device=self.current_device, dtype=torch.int32
)
self.bounds_check_warning = torch.tensor(
[0], device=self.current_device, dtype=torch.int64
)
# For pruning related or uvm related buffers, we just set them as empty tensors.
self.index_remapping_hash_table = torch.empty_like(
self.index_remapping_hash_table, device=self.current_device
)
self.index_remapping_hash_table_offsets = torch.empty_like(
self.index_remapping_hash_table_offsets, device=self.current_device
)
self.index_remappings_array = torch.empty_like(
self.index_remappings_array, device=self.current_device
)
self.index_remappings_array_offsets = torch.empty_like(
self.index_remappings_array_offsets, device=self.current_device
)
# pyre-fixme[16]: `IntNBitTableBatchedEmbeddingBagsCodegen` has no attribute
# `lxu_cache_weights`.
self.lxu_cache_weights = torch.empty_like(
# pyre-fixme[6]: For 1st argument expected `Tensor` but got
# `Union[Module, Tensor]`.
self.lxu_cache_weights,
device=self.current_device,
)
self.original_rows_per_table = torch.empty_like(
self.original_rows_per_table, device=self.current_device
)
self.table_wise_cache_miss = torch.empty_like(
self.table_wise_cache_miss, device=self.current_device
)
self.weights_uvm = torch.empty_like(
self.weights_uvm, device=self.current_device
)
def _apply_split(
self,
dev_size: int,
host_size: int,
uvm_size: int,
placements: List[int],
offsets: List[int],
enforce_hbm: bool,
) -> None:
assert not self.weight_initialized, "Weights have already been initialized."
self.weight_initialized = True
self.weights_physical_placements = placements
self.weights_physical_offsets = offsets
self.host_size = host_size
self.dev_size = dev_size
self.uvm_size = uvm_size
self.initialize_logical_weights_placements_and_offsets()
if dev_size > 0:
self.weights_dev = torch.zeros(
dev_size,
device=self.current_device,
dtype=torch.uint8,
)
if host_size > 0:
self.weights_host = torch.zeros(
host_size, device=self.current_device, dtype=torch.uint8
)
if uvm_size > 0:
assert not self.use_cpu
if enforce_hbm:
if not torch.jit.is_scripting():
logging.info("Enforce hbm for the cache location")
self.weights_uvm = torch.zeros(
uvm_size,
device=self.current_device,
dtype=torch.uint8,
)
else:
self.weights_uvm = torch.zeros(
uvm_size,
out=torch.ops.fbgemm.new_unified_tensor(
torch.zeros(1, device=self.D_offsets.device, dtype=torch.uint8),
[uvm_size],
self.uvm_host_mapped,
),
)
def _apply_cache_state(
self,
cache_state: CacheState,
cache_algorithm: CacheAlgorithm,
cache_load_factor: float,
cache_sets: int,
cache_reserved_memory: float,
) -> None:
assert self.cache_assoc in [
1,
32,
64,
], "Only 1-way or 32-way(64-way for AMD) implmeneted for now"
self.cache_algorithm = cache_algorithm
# pyre-ignore[16]
self.timestep_counter = torch.classes.fbgemm.AtomicCounter()
# pyre-ignore[16]
self.timestep_prefetch_size = torch.classes.fbgemm.AtomicCounter()
self.max_prefetch_depth = MAX_PREFETCH_DEPTH
if self.current_device.type == "meta":
# To reslove "Cannot copy out of meta tensor; no data!" error
lxu_cache_locations_empty = torch.empty(0, dtype=torch.int32).fill_(-1)
else:
lxu_cache_locations_empty = torch.empty(
0, device=self.current_device, dtype=torch.int32
).fill_(-1)
# pyre-ignore[16]
self.lxu_cache_locations_list = torch.classes.fbgemm.TensorQueue(
lxu_cache_locations_empty
)
# NOTE: no cache for CPU mode!
if cache_state.total_cache_hash_size == 0 or self.use_cpu:
self.register_buffer(
"lxu_cache_weights",
torch.zeros(0, 0, device=self.current_device, dtype=torch.uint8),
)
# NOTE: make TorchScript work!
self.register_buffer(
"cache_hash_size_cumsum",
torch.zeros(1, dtype=torch.int64, device=self.current_device),
persistent=False,
)
self.register_buffer(
"total_cache_hash_size",
torch.zeros(1, dtype=torch.int64, device=self.current_device),
persistent=False,
)
self.register_buffer(
"cache_index_table_map",
torch.zeros(1, dtype=torch.int64, device=self.current_device),
persistent=False,
)
self.register_buffer(
"lxu_cache_state",
torch.zeros(1, dtype=torch.int64, device=self.current_device),
persistent=False,
)
self.register_buffer(
"lxu_state",
torch.zeros(1, dtype=torch.int64, device=self.current_device),
persistent=False,
)
self.register_buffer(
"lxu_cache_miss_timestamp",
torch.zeros(1, dtype=torch.int64, device=self.current_device),
persistent=False,
)
self.register_buffer(
"cache_miss_counter",
torch.tensor(
[0, 0, 0, 0], dtype=torch.int64, device=self.current_device
),
persistent=False,
)
self.register_buffer(
"uvm_cache_stats",
torch.zeros(
size=(self.uvm_cache_stats_size,),
device=self.current_device,
dtype=torch.int64,
),
persistent=False,
)
self.register_buffer(
"local_uvm_cache_stats",
torch.zeros(
size=(self.uvm_cache_stats_size,),
device=self.current_device,
dtype=torch.int32,
),
persistent=False,
)
return
assert cache_load_factor > 0
if cache_sets <= 0:
total_memory = torch.cuda.get_device_properties(
self.current_device
).total_memory
free_memory = (
total_memory
- torch.cuda.memory_reserved(self.current_device)
- int(cache_reserved_memory)
)
assert free_memory > 0
cache_sets = (
int(cache_state.total_cache_hash_size * cache_load_factor)
+ self.cache_assoc
- 1
) // self.cache_assoc
# Note that element_size has been included in max_D_cache (in Bytes)
cache_size = cache_sets * self.cache_assoc * self.max_D_cache
if cache_size > free_memory:
cache_sets = (
int(1.0 * free_memory / self.max_D_cache) + self.cache_assoc - 1
) // self.cache_assoc
cache_sets = 1 if cache_sets == 0 else cache_sets
cache_load_factor = (
1.0 * cache_sets * self.cache_assoc / int(cache_state.total_cache_hash_size)
)
assert cache_sets > 0
if cache_algorithm == CacheAlgorithm.LFU:
assert cache_sets < 2**24 - 1
cache_size = cache_sets * self.cache_assoc * self.max_D_cache
logging.info(
f"Using on-device cache with admission algorithm "
f"{cache_algorithm}, {cache_sets} sets, "
f"cache_load_factor: {cache_load_factor : .3f}, "
f"{cache_size / 1024.0 / 1024.0 / 1024.0 : .2f}GB"
)
self.total_cache_hash_size = cache_state.total_cache_hash_size
self.register_buffer(
"cache_hash_size_cumsum",
torch.tensor(
cache_state.cache_hash_size_cumsum,
device=self.current_device,
dtype=torch.int64,
),
)
self.register_buffer(
"cache_index_table_map",
torch.tensor(
cache_state.cache_index_table_map,
device=self.current_device,
dtype=torch.int32,
),
)
self.register_buffer(
"lxu_cache_state",
torch.zeros(
cache_sets,
self.cache_assoc,
device=self.current_device,
dtype=torch.int64,
).fill_(-1),
)
self.register_buffer(
"lxu_cache_weights",
torch.zeros(
cache_sets * self.cache_assoc,
self.max_D_cache,
device=self.current_device,
dtype=torch.uint8,
),
)
self.register_buffer(
"lxu_state",
torch.zeros(
size=(
(self.total_cache_hash_size + 1,)
if cache_algorithm == CacheAlgorithm.LFU
else (cache_sets, self.cache_assoc)
),
device=self.current_device,
dtype=torch.int64,
),
)
if self.cache_assoc == 1:
self.register_buffer(
"lxu_cache_miss_timestamp",
torch.zeros(
cache_sets,
self.cache_assoc,
device=self.current_device,
dtype=torch.int64,
),
)
else:
# make TorchScript work
self.register_buffer(
"lxu_cache_miss_timestamp",
torch.zeros(1, device=self.current_device, dtype=torch.int64),
persistent=False,
)
self.register_buffer(
"cache_miss_counter",
torch.tensor([0, 0, 0, 0], device=self.current_device, dtype=torch.int64),
)
self.register_buffer(
"uvm_cache_stats",
torch.zeros(
size=(self.uvm_cache_stats_size,),
device=self.current_device,
dtype=torch.int64,
),
persistent=False,
)
self.register_buffer(
"local_uvm_cache_stats",
torch.zeros(
size=(self.uvm_cache_stats_size,),
device=self.current_device,
dtype=torch.int32,
),
persistent=False,
)
if cache_algorithm not in (CacheAlgorithm.LFU, CacheAlgorithm.LRU):
raise ValueError(
f"cache_algorithm must be {CacheAlgorithm.LRU} "
f"or {CacheAlgorithm.LFU}"
)
if self.gather_uvm_cache_stats:
self.reset_uvm_cache_stats()
def reset_cache_states(self) -> None:
# pyre-fixme[29]: `Union[(self: TensorBase) -> int, Module, Tensor]` is not
# a function.
if not self.lxu_cache_weights.numel():
return
self.lxu_cache_state.fill_(-1)
self.lxu_state.fill_(0)
self.timestep_counter.reset()
[docs] @torch.jit.export
def split_embedding_weights_with_scale_bias(
self, split_scale_bias_mode: int = 1
) -> List[Tuple[Tensor, Optional[Tensor], Optional[Tensor]]]:
"""
Returns a list of weights, split by table
split_scale_bias_mode:
0: return one row;
1: return weights + scale_bias;
2: return weights, scale, bias.
"""
assert self.weight_initialized
splits: List[Tuple[Tensor, Optional[Tensor], Optional[Tensor]]] = []
for t, (_, rows, dim, weight_ty, _) in enumerate(self.embedding_specs):
placement = self.weights_physical_placements[t]
if (
placement == EmbeddingLocation.DEVICE.value
or placement == EmbeddingLocation.MTIA.value
):
weights = self.weights_dev
elif placement == EmbeddingLocation.HOST.value:
weights = self.weights_host
else:
weights = self.weights_uvm
offset = self.weights_physical_offsets[t]
weights_shifts = weights.detach()[
offset : offset
+ rows
* rounded_row_size_in_bytes(
dim, weight_ty, self.row_alignment, self.scale_bias_size_in_bytes
)
].view(
rows,
rounded_row_size_in_bytes(
dim, weight_ty, self.row_alignment, self.scale_bias_size_in_bytes
),
)
if split_scale_bias_mode == 1 or split_scale_bias_mode == 2:
# remove the padding at the end of each row.
weights_shifts = weights_shifts[
:,
: unpadded_row_size_in_bytes(
dim, weight_ty, self.scale_bias_size_in_bytes
),
]
if (
weight_ty.value == SparseType.INT8.value
or weight_ty.value == SparseType.INT4.value
or weight_ty.value == SparseType.INT2.value
):
if split_scale_bias_mode == 1:
if self.reverse_qparam:
splits.append(
(
weights_shifts[
:, 0 : (0 - self.scale_bias_size_in_bytes)
],
weights_shifts[
:, (0 - self.scale_bias_size_in_bytes) :
],
None,
)
)
else:
splits.append(
(
weights_shifts[:, self.scale_bias_size_in_bytes :],
weights_shifts[:, : self.scale_bias_size_in_bytes],
None,
)
)
elif split_scale_bias_mode == 2:
if self.reverse_qparam:
# weights_shifts: [0:-4] is real weights; [-4:-2] is scale; [-2:] is bias
splits.append(
(
weights_shifts[
:, 0 : (0 - self.scale_bias_size_in_bytes)
],
weights_shifts[
:,
(0 - self.scale_bias_size_in_bytes) : (
0 - self.scale_bias_size_in_bytes // 2
),
].view(torch.float16),
weights_shifts[
:, (0 - self.scale_bias_size_in_bytes // 2) :
].view(torch.float16),
)
)
else:
# weights_shifts: [0:2] is scale; [2:4] is bias; [4:] is real weights
splits.append(
(
weights_shifts[:, self.scale_bias_size_in_bytes :],
weights_shifts[
:, : self.scale_bias_size_in_bytes // 2
].view(torch.float16),
weights_shifts[
:,
self.scale_bias_size_in_bytes
// 2 : self.scale_bias_size_in_bytes,
].view(torch.float16),
)
)
else:
raise ValueError("split_scale_bias_mode is not supported")
elif (
weight_ty.value == SparseType.FP8.value
or weight_ty.value == SparseType.FP16.value
or weight_ty.value == SparseType.FP32.value
):
splits.append(
(
weights_shifts,
None,
None,
)
)
else:
raise ValueError("weight_ty is not supported")
else: # split_scale_bias_mode == 0:
splits.append((weights_shifts, None, None))
return splits
[docs] @torch.jit.export
def split_embedding_weights(
self,
split_scale_shifts: bool = True,
# When true, return list of two tensors, the first with weights and
# the second with scale_bias.
# This should've been named as split_scale_bias.
# Keep as is for backward compatibility.
) -> List[Tuple[Tensor, Optional[Tensor]]]:
"""
Returns a list of weights, split by table
"""
# fmt: off
splits: List[Tuple[Tensor, Optional[Tensor], Optional[Tensor]]] = (
self.split_embedding_weights_with_scale_bias(
split_scale_bias_mode=(1 if split_scale_shifts else 0)
)
)
# fmt: on
return [
(split_weight_scale_bias[0], split_weight_scale_bias[1])
for split_weight_scale_bias in splits
]
@torch.jit.export
def initialize_weights(self) -> None:
if not self.weight_initialized:
self._apply_split(
self.dev_size,
self.host_size,
self.uvm_size,
self.weights_physical_placements,
self.weights_physical_offsets,
self.enforce_hbm,
)
self.weight_initialized = True
[docs] def fill_random_weights(self) -> None:
"""
Fill the buffer with random weights, table by table
"""
self.initialize_weights()
weights = self.split_embedding_weights()
for dest_weight in weights:
random_quant_scaled_tensor(
shape=dest_weight[0].shape,
device=self.current_device,
output_tensor=dest_weight[0],
)
[docs] def assign_embedding_weights(
self, q_weight_list: List[Tuple[Tensor, Optional[Tensor]]]
) -> None:
"""
Assigns self.split_embedding_weights() with values from the input list of weights and scale_shifts.
"""
weights = self.split_embedding_weights()
assert len(q_weight_list) == len(weights)
for dest_weight, input_weight in zip(weights, q_weight_list):
dest_weight[0].copy_(input_weight[0])
if input_weight[1] is not None:
assert dest_weight[1] is not None
dest_weight[1].copy_(input_weight[1])
else:
assert dest_weight[1] is None
@torch.jit.export
def set_index_remappings_array(
self,
index_remapping: List[Tensor],
) -> None:
rows: List[int] = [e[1] for e in self.embedding_specs]
index_remappings_array_offsets = [0]
original_feature_rows = torch.jit.annotate(List[int], [])
last_offset = 0
for t, mapping in enumerate(index_remapping):
if mapping is not None:
current_original_row = mapping.numel()
last_offset += current_original_row
original_feature_rows.append(current_original_row)
else:
original_feature_rows.append(rows[t])
index_remappings_array_offsets.append(last_offset)
self.index_remappings_array_offsets = torch.tensor(
index_remappings_array_offsets,
device=self.current_device,
dtype=torch.int64,
)
if len(original_feature_rows) == 0:
original_feature_rows = rows
self.original_rows_per_table = torch.tensor(
[original_feature_rows[t] for t in self.feature_table_map],
device=self.current_device,
dtype=torch.int64,
)
index_remappings_filter_nones = []
for mapping in index_remapping:
if mapping is not None:
index_remappings_filter_nones.append(mapping)
if len(index_remappings_filter_nones) == 0:
self.index_remappings_array = torch.empty(
0, dtype=self.indices_dtype, device=self.current_device
)
else:
self.index_remappings_array = torch.cat(index_remappings_filter_nones).to(
dtype=self.indices_dtype, device=self.current_device
)
def set_index_remappings(
self,
index_remapping: List[Tensor],
pruning_hash_load_factor: float = 0.5,
use_array_for_index_remapping: bool = True,
) -> None:
rows: List[int] = [e[1] for e in self.embedding_specs]
T = len(self.embedding_specs)
# Hash mapping pruning
if not use_array_for_index_remapping:
capacities = [
(
round_up(int(row * 1.0 / pruning_hash_load_factor), 32)
if index_remap is not None
else 0
)
for (index_remap, row) in zip(index_remapping, rows)
]
hash_table = torch.empty(
(sum(capacities), 2),
dtype=self.indices_dtype,
)
hash_table[:, :] = -1
hash_table_offsets = torch.tensor([0] + list(accumulate(capacities))).long()
merged_index_remappings = [
mapping if mapping is not None else Tensor(list(range(row)))
for (mapping, row) in zip(index_remapping, rows)
]
original_feature_rows = [
mapping.numel() for mapping in merged_index_remappings
]
if len(original_feature_rows) == 0:
original_feature_rows = rows
self.original_rows_per_table = torch.tensor(
[original_feature_rows[t] for t in self.feature_table_map],
device=self.current_device,
dtype=torch.int64,
)
dense_indices = torch.cat(merged_index_remappings, dim=0).int()
indices = torch.cat(
[torch.arange(row) for row in original_feature_rows], dim=0
).int()
offsets = torch.tensor([0] + list(accumulate(original_feature_rows))).int()
if self.use_cpu:
self.index_remapping_hash_table_cpu = (
# pyre-ignore[16]
torch.classes.fbgemm.PrunedMapCPU()
)
self.index_remapping_hash_table_cpu.insert(
indices, dense_indices, offsets, T
)
else:
# pruned_hashmap_insert only has cpu implementation: Move dense_indices to CPU
torch.ops.fbgemm.pruned_hashmap_insert(
indices,
dense_indices.cpu(),
offsets,
hash_table,
hash_table_offsets,
)
self.index_remapping_hash_table = hash_table.to(
dtype=self.indices_dtype, device=self.current_device
)
self.index_remapping_hash_table_offsets = hash_table_offsets.to(
self.current_device
)
self.index_remapping_hash_table_cpu = None
# Array mapping pruning
else:
self.set_index_remappings_array(index_remapping)
def _embedding_inplace_update_per_table(
self,
update_table_idx: int,
update_row_indices: List[int],
update_weights: Tensor,
) -> None:
row_size = len(update_row_indices)
if row_size == 0:
return
# pyre-fixme[9]: update_row_indices has type `List[int]`; used as `Tensor`.
update_row_indices = torch.tensor(
update_row_indices,
device=self.current_device,
dtype=torch.int64,
)
table_values = self.split_embedding_weights(split_scale_shifts=False)[
update_table_idx
]
table_values[0].scatter_(
dim=0,
# pyre-fixme[16]: `List` has no attribute `view`.
index=update_row_indices.view(row_size, 1).expand_as(update_weights),
src=update_weights,
)
@torch.jit.export
def embedding_inplace_update(
self,
update_table_indices: List[int],
update_row_indices: List[List[int]],
update_weights: List[Tensor],
) -> None:
for i in range(len(update_table_indices)):
self._embedding_inplace_update_per_table(
update_table_indices[i],
update_row_indices[i],
update_weights[i],
)
def embedding_inplace_update_internal(
self,
update_table_indices: List[int],
update_row_indices: List[int],
update_weights: Tensor,
) -> None:
assert len(update_table_indices) == len(update_row_indices)
update_offsets = []
update_offset = 0
for table_idx in update_table_indices:
D_bytes = rounded_row_size_in_bytes(
self.embedding_specs[table_idx][2],
self.embedding_specs[table_idx][3],
self.row_alignment,
self.scale_bias_size_in_bytes,
)
update_offsets.append(update_offset)
update_offset += D_bytes
update_offsets.append(update_offset)
# pyre-fixme[9]: update_table_indices has type `List[int]`; used as `Tensor`.
update_table_indices = torch.tensor(
update_table_indices,
device=self.current_device,
dtype=torch.int32,
)
# pyre-fixme[9]: update_row_indices has type `List[int]`; used as `Tensor`.
update_row_indices = torch.tensor(
update_row_indices,
device=self.current_device,
dtype=torch.int64,
)
update_offsets = torch.tensor(
update_offsets,
device=self.current_device,
dtype=torch.int64,
)
# Only support array based pruning for now.
assert self.index_remapping_hash_table_cpu is None
assert self.index_remapping_hash_table.numel() == 0
assert self.index_remappings_array.numel() >= 0
if self.index_remappings_array.numel() > 0:
update_row_indices = torch.ops.fbgemm.pruned_array_lookup_from_row_idx(
update_row_indices,
update_table_indices,
self.index_remappings_array,
self.index_remappings_array_offsets,
)
lxu_cache_locations = None
# pyre-fixme[29]: `Union[(self: TensorBase) -> int, Module, Tensor]` is not
# a function.
if self.lxu_cache_weights.numel() > 0:
linear_cache_indices = (
torch.ops.fbgemm.linearize_cache_indices_from_row_idx(
self.cache_hash_size_cumsum,
update_table_indices,
update_row_indices,
)
)
if self.cache_assoc in [32, 64]:
# 64 for AMD
self.prefetch_32way(linear_cache_indices)
elif self.cache_assoc == 1:
self.prefetch_1way(linear_cache_indices)
else:
raise ValueError(f"{self.cache_assoc} not in [1, 32, 64]")
lxu_cache_locations = self.lxu_cache_locations_list.pop()
torch.ops.fbgemm.emb_inplace_update(
dev_weights=self.weights_host if self.host_size > 0 else self.weights_dev,
uvm_weights=self.weights_uvm,
weights_placements=self.weights_placements,
weights_offsets=self.weights_offsets,
weights_tys=self.weights_tys,
D_offsets=self.D_offsets,
update_weights=update_weights,
update_table_indices=update_table_indices,
update_row_indices=update_row_indices,
update_offsets=update_offsets,
row_alignment=self.row_alignment,
lxu_cache_weights=self.lxu_cache_weights,
lxu_cache_locations=lxu_cache_locations,
)