HybridNets

Before You Start

Start from a Python>=3.7 environment with PyTorch>=1.10 installed. To install PyTorch see https://pytorch.org/get-started/locally/. To install HybridNets dependencies:

pip install -qr https://raw.githubusercontent.com/datvuthanh/HybridNets/main/requirements.txt  # install dependencies

Model Description

HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset.

Results

Traffic Object Detection

ModelRecall (%)mAP@0.5 (%)
MultiNet81.360.2
DLT-Net89.468.4
Faster R-CNN77.255.6
YOLOv5s86.877.2
YOLOP89.276.5
HybridNets92.877.3

Drivable Area Segmentation

ModelDrivable mIoU (%)
MultiNet71.6
DLT-Net71.3
PSPNet89.6
YOLOP91.5
HybridNets90.5

Lane Line Detection

ModelAccuracy (%)Lane Line IoU (%)
Enet34.1214.64
SCNN35.7915.84
Enet-SAD36.5616.02
YOLOP70.526.2
HybridNets85.431.6

Load From PyTorch Hub

This example loads the pretrained HybridNets model and passes an image for inference.

import torch

# load model
model = torch.hub.load('datvuthanh/hybridnets', 'hybridnets', pretrained=True)

#inference
img = torch.randn(1,3,640,384)
features, regression, classification, anchors, segmentation = model(img)

Citation

If you find our paper and code useful for your research, please consider giving a star and citation:

@misc{vu2022hybridnets,
      title={HybridNets: End-to-End Perception Network}, 
      author={Dat Vu and Bao Ngo and Hung Phan},
      year={2022},
      eprint={2203.09035},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

HybridNets – End2End Perception Network

Model Type: Vision
Submitted by: Dat Vu Thanh