Shortcuts, *, beta=12.0, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[source]

Computes the Kaiser window.

The Kaiser window is defined as follows:

wn=I0(β1(nN/2N/2)2)/I0(β)w_n = I_0 \left( \beta \sqrt{1 - \left( {\frac{n - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )

where I_0 is the zeroth order modified Bessel function of the first kind (see torch.special.i0()), and N = M - 1 if sym else M.

The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if M is even and sym is True.


M (int) – the length of the window. In other words, the number of points of the returned window.

Keyword Arguments
  • beta (float, optional) – shape parameter for the window. Must be non-negative. Default: 12.0

  • sym (bool, optional) – If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_dtype()).

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Return type



>>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
>>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
>>>, sym=False,std=0.9)
tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources