class torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1, verbose='deprecated')[source]

Decays the learning rate of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr.

  • optimizer (Optimizer) – Wrapped optimizer.

  • step_size (int) – Period of learning rate decay.

  • gamma (float) – Multiplicative factor of learning rate decay. Default: 0.1.

  • last_epoch (int) – The index of last epoch. Default: -1.

  • verbose (bool) –

    If True, prints a message to stdout for each update. Default: False.

    Deprecated since version 2.2: verbose is deprecated. Please use get_last_lr() to access the learning rate.


>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.05     if epoch < 30
>>> # lr = 0.005    if 30 <= epoch < 60
>>> # lr = 0.0005   if 60 <= epoch < 90
>>> # ...
>>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
>>> for epoch in range(100):
>>>     train(...)
>>>     validate(...)
>>>     scheduler.step()

Return last computed learning rate by current scheduler.


Loads the schedulers state.


state_dict (dict) – scheduler state. Should be an object returned from a call to state_dict().

print_lr(is_verbose, group, lr, epoch=None)

Display the current learning rate.


Returns the state of the scheduler as a dict.

It contains an entry for every variable in self.__dict__ which is not the optimizer.


Access comprehensive developer documentation for PyTorch

View Docs


Get in-depth tutorials for beginners and advanced developers

View Tutorials


Find development resources and get your questions answered

View Resources