Shortcuts

# Source code for torch.distributions.normal

# mypy: allow-untyped-defs
import math
from numbers import Number, Real

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily

__all__ = ["Normal"]

[docs]class Normal(ExponentialFamily):
r"""
Creates a normal (also called Gaussian) distribution parameterized by
:attr:loc and :attr:scale.

Example::

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
>>> m.sample()  # normally distributed with loc=0 and scale=1
tensor([ 0.1046])

Args:
loc (float or Tensor): mean of the distribution (often referred to as mu)
scale (float or Tensor): standard deviation of the distribution
(often referred to as sigma)
"""
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
support = constraints.real
has_rsample = True
_mean_carrier_measure = 0

@property
def mean(self):
return self.loc

@property
def mode(self):
return self.loc

@property
def stddev(self):
return self.scale

@property
def variance(self):
return self.stddev.pow(2)

def __init__(self, loc, scale, validate_args=None):
if isinstance(loc, Number) and isinstance(scale, Number):
batch_shape = torch.Size()
else:
batch_shape = self.loc.size()
super().__init__(batch_shape, validate_args=validate_args)

[docs]    def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Normal, _instance)
batch_shape = torch.Size(batch_shape)
new.loc = self.loc.expand(batch_shape)
new.scale = self.scale.expand(batch_shape)
super(Normal, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new

[docs]    def sample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)

[docs]    def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
return self.loc + eps * self.scale

[docs]    def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
# compute the variance
var = self.scale**2
log_scale = (
math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log()
)
return (
-((value - self.loc) ** 2) / (2 * var)
- log_scale
- math.log(math.sqrt(2 * math.pi))
)

[docs]    def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return 0.5 * (
1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2))
)

[docs]    def icdf(self, value):
return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2)

[docs]    def entropy(self):
return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale)

@property
def _natural_params(self):
return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal())

def _log_normalizer(self, x, y):
return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y)


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials