Shortcuts

Source code for torchvision.ops.poolers

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch import nn, Tensor

import torchvision
from torchvision.ops import roi_align
from torchvision.ops.boxes import box_area

from typing import Optional, List, Dict, Tuple, Union


# copying result_idx_in_level to a specific index in result[]
# is not supported by ONNX tracing yet.
# _onnx_merge_levels() is an implementation supported by ONNX
# that merges the levels to the right indices
@torch.jit.unused
def _onnx_merge_levels(levels: Tensor, unmerged_results: List[Tensor]) -> Tensor:
    first_result = unmerged_results[0]
    dtype, device = first_result.dtype, first_result.device
    res = torch.zeros((levels.size(0), first_result.size(1),
                       first_result.size(2), first_result.size(3)),
                      dtype=dtype, device=device)
    for level in range(len(unmerged_results)):
        index = torch.where(levels == level)[0].view(-1, 1, 1, 1)
        index = index.expand(index.size(0),
                             unmerged_results[level].size(1),
                             unmerged_results[level].size(2),
                             unmerged_results[level].size(3))
        res = res.scatter(0, index, unmerged_results[level])
    return res


# TODO: (eellison) T54974082 https://github.com/pytorch/pytorch/issues/26744/pytorch/issues/26744
def initLevelMapper(
    k_min: int,
    k_max: int,
    canonical_scale: int = 224,
    canonical_level: int = 4,
    eps: float = 1e-6,
):
    return LevelMapper(k_min, k_max, canonical_scale, canonical_level, eps)


class LevelMapper(object):
    """Determine which FPN level each RoI in a set of RoIs should map to based
    on the heuristic in the FPN paper.

    Args:
        k_min (int)
        k_max (int)
        canonical_scale (int)
        canonical_level (int)
        eps (float)
    """

    def __init__(
        self,
        k_min: int,
        k_max: int,
        canonical_scale: int = 224,
        canonical_level: int = 4,
        eps: float = 1e-6,
    ):
        self.k_min = k_min
        self.k_max = k_max
        self.s0 = canonical_scale
        self.lvl0 = canonical_level
        self.eps = eps

    def __call__(self, boxlists: List[Tensor]) -> Tensor:
        """
        Args:
            boxlists (list[BoxList])
        """
        # Compute level ids
        s = torch.sqrt(torch.cat([box_area(boxlist) for boxlist in boxlists]))

        # Eqn.(1) in FPN paper
        target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0) + torch.tensor(self.eps, dtype=s.dtype))
        target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max)
        return (target_lvls.to(torch.int64) - self.k_min).to(torch.int64)


[docs]class MultiScaleRoIAlign(nn.Module): """ Multi-scale RoIAlign pooling, which is useful for detection with or without FPN. It infers the scale of the pooling via the heuristics specified in eq. 1 of the `Feature Pyramid Network paper <https://arxiv.org/abs/1612.03144>`_. They keyword-only parameters ``canonical_scale`` and ``canonical_level`` correspond respectively to ``224`` and ``k0=4`` in eq. 1, and have the following meaning: ``canonical_level`` is the target level of the pyramid from which to pool a region of interest with ``w x h = canonical_scale x canonical_scale``. Args: featmap_names (List[str]): the names of the feature maps that will be used for the pooling. output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region sampling_ratio (int): sampling ratio for ROIAlign canonical_scale (int, optional): canonical_scale for LevelMapper canonical_level (int, optional): canonical_level for LevelMapper Examples:: >>> m = torchvision.ops.MultiScaleRoIAlign(['feat1', 'feat3'], 3, 2) >>> i = OrderedDict() >>> i['feat1'] = torch.rand(1, 5, 64, 64) >>> i['feat2'] = torch.rand(1, 5, 32, 32) # this feature won't be used in the pooling >>> i['feat3'] = torch.rand(1, 5, 16, 16) >>> # create some random bounding boxes >>> boxes = torch.rand(6, 4) * 256; boxes[:, 2:] += boxes[:, :2] >>> # original image size, before computing the feature maps >>> image_sizes = [(512, 512)] >>> output = m(i, [boxes], image_sizes) >>> print(output.shape) >>> torch.Size([6, 5, 3, 3]) """ __annotations__ = { 'scales': Optional[List[float]], 'map_levels': Optional[LevelMapper] } def __init__( self, featmap_names: List[str], output_size: Union[int, Tuple[int], List[int]], sampling_ratio: int, *, canonical_scale: int = 224, canonical_level: int = 4, ): super(MultiScaleRoIAlign, self).__init__() if isinstance(output_size, int): output_size = (output_size, output_size) self.featmap_names = featmap_names self.sampling_ratio = sampling_ratio self.output_size = tuple(output_size) self.scales = None self.map_levels = None self.canonical_scale = canonical_scale self.canonical_level = canonical_level def convert_to_roi_format(self, boxes: List[Tensor]) -> Tensor: concat_boxes = torch.cat(boxes, dim=0) device, dtype = concat_boxes.device, concat_boxes.dtype ids = torch.cat( [ torch.full_like(b[:, :1], i, dtype=dtype, layout=torch.strided, device=device) for i, b in enumerate(boxes) ], dim=0, ) rois = torch.cat([ids, concat_boxes], dim=1) return rois def infer_scale(self, feature: Tensor, original_size: List[int]) -> float: # assumption: the scale is of the form 2 ** (-k), with k integer size = feature.shape[-2:] possible_scales: List[float] = [] for s1, s2 in zip(size, original_size): approx_scale = float(s1) / float(s2) scale = 2 ** float(torch.tensor(approx_scale).log2().round()) possible_scales.append(scale) assert possible_scales[0] == possible_scales[1] return possible_scales[0] def setup_scales( self, features: List[Tensor], image_shapes: List[Tuple[int, int]], ) -> None: assert len(image_shapes) != 0 max_x = 0 max_y = 0 for shape in image_shapes: max_x = max(shape[0], max_x) max_y = max(shape[1], max_y) original_input_shape = (max_x, max_y) scales = [self.infer_scale(feat, original_input_shape) for feat in features] # get the levels in the feature map by leveraging the fact that the network always # downsamples by a factor of 2 at each level. lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item() lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item() self.scales = scales self.map_levels = initLevelMapper( int(lvl_min), int(lvl_max), canonical_scale=self.canonical_scale, canonical_level=self.canonical_level, ) def forward( self, x: Dict[str, Tensor], boxes: List[Tensor], image_shapes: List[Tuple[int, int]], ) -> Tensor: """ Args: x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have all the same number of channels, but they can have different sizes. boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in (x1, y1, x2, y2) format and in the image reference size, not the feature map reference. The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``. image_shapes (List[Tuple[height, width]]): the sizes of each image before they have been fed to a CNN to obtain feature maps. This allows us to infer the scale factor for each one of the levels to be pooled. Returns: result (Tensor) """ x_filtered = [] for k, v in x.items(): if k in self.featmap_names: x_filtered.append(v) num_levels = len(x_filtered) rois = self.convert_to_roi_format(boxes) if self.scales is None: self.setup_scales(x_filtered, image_shapes) scales = self.scales assert scales is not None if num_levels == 1: return roi_align( x_filtered[0], rois, output_size=self.output_size, spatial_scale=scales[0], sampling_ratio=self.sampling_ratio ) mapper = self.map_levels assert mapper is not None levels = mapper(boxes) num_rois = len(rois) num_channels = x_filtered[0].shape[1] dtype, device = x_filtered[0].dtype, x_filtered[0].device result = torch.zeros( (num_rois, num_channels,) + self.output_size, dtype=dtype, device=device, ) tracing_results = [] for level, (per_level_feature, scale) in enumerate(zip(x_filtered, scales)): idx_in_level = torch.where(levels == level)[0] rois_per_level = rois[idx_in_level] result_idx_in_level = roi_align( per_level_feature, rois_per_level, output_size=self.output_size, spatial_scale=scale, sampling_ratio=self.sampling_ratio) if torchvision._is_tracing(): tracing_results.append(result_idx_in_level.to(dtype)) else: # result and result_idx_in_level's dtypes are based on dtypes of different # elements in x_filtered. x_filtered contains tensors output by different # layers. When autocast is active, it may choose different dtypes for # different layers' outputs. Therefore, we defensively match result's dtype # before copying elements from result_idx_in_level in the following op. # We need to cast manually (can't rely on autocast to cast for us) because # the op acts on result in-place, and autocast only affects out-of-place ops. result[idx_in_level] = result_idx_in_level.to(result.dtype) if torchvision._is_tracing(): result = _onnx_merge_levels(levels, tracing_results) return result def __repr__(self) -> str: return (f"{self.__class__.__name__}(featmap_names={self.featmap_names}, " f"output_size={self.output_size}, sampling_ratio={self.sampling_ratio})")

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources