Shortcuts

torchvision.utils

torchvision.utils.make_grid(tensor: Union[torch.Tensor, List[torch.Tensor]], nrow: int = 8, padding: int = 2, normalize: bool = False, value_range: Union[Tuple[int, int], NoneType] = None, scale_each: bool = False, pad_value: int = 0, **kwargs) → torch.Tensor[source]

Make a grid of images.

Parameters:
  • tensor (Tensor or list) – 4D mini-batch Tensor of shape (B x C x H x W) or a list of images all of the same size.
  • nrow (int, optional) – Number of images displayed in each row of the grid. The final grid size is (B / nrow, nrow). Default: 8.
  • padding (int, optional) – amount of padding. Default: 2.
  • normalize (bool, optional) – If True, shift the image to the range (0, 1), by the min and max values specified by range. Default: False.
  • value_range (tuple, optional) – tuple (min, max) where min and max are numbers, then these numbers are used to normalize the image. By default, min and max are computed from the tensor.
  • scale_each (bool, optional) – If True, scale each image in the batch of images separately rather than the (min, max) over all images. Default: False.
  • pad_value (float, optional) – Value for the padded pixels. Default: 0.

Example

See this notebook here

torchvision.utils.save_image(tensor: Union[torch.Tensor, List[torch.Tensor]], fp: Union[str, pathlib.Path, BinaryIO], format: Union[str, NoneType] = None, **kwargs) → None[source]

Save a given Tensor into an image file.

Parameters:
  • tensor (Tensor or list) – Image to be saved. If given a mini-batch tensor, saves the tensor as a grid of images by calling make_grid.
  • fp (string or file object) – A filename or a file object
  • format (Optional) – If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used.
  • **kwargs – Other arguments are documented in make_grid.
torchvision.utils.draw_bounding_boxes(image: torch.Tensor, boxes: torch.Tensor, labels: Union[List[str], NoneType] = None, colors: Union[List[Union[str, Tuple[int, int, int]]], NoneType] = None, fill: Union[bool, NoneType] = False, width: int = 1, font: Union[str, NoneType] = None, font_size: int = 10) → torch.Tensor[source]

Draws bounding boxes on given image. The values of the input image should be uint8 between 0 and 255. If filled, Resulting Tensor should be saved as PNG image.

Parameters:
  • image (Tensor) – Tensor of shape (C x H x W)
  • boxes (Tensor) – Tensor of size (N, 4) containing bounding boxes in (xmin, ymin, xmax, ymax) format. Note that the boxes are absolute coordinates with respect to the image. In other words: 0 <= xmin < xmax < W and 0 <= ymin < ymax < H.
  • labels (List[str]) – List containing the labels of bounding boxes.
  • colors (List[Union[str, Tuple[int, int, int]]]) – List containing the colors of bounding boxes. The colors can be represented as str or Tuple[int, int, int].
  • fill (bool) – If True fills the bounding box with specified color.
  • width (int) – Width of bounding box.
  • font (str) – A filename containing a TrueType font. If the file is not found in this filename, the loader may also search in other directories, such as the fonts/ directory on Windows or /Library/Fonts/, /System/Library/Fonts/ and ~/Library/Fonts/ on macOS.
  • font_size (int) – The requested font size in points.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources